14,773 research outputs found

    Benefits of Location-Based Access Control:A Literature Study

    Get PDF
    Location-based access control (LBAC) has been suggested as a means to improve IT security. By 'grounding' users and systems to a particular location, \ud attackers supposedly have more difficulty in compromising a system. However, the motivation behind LBAC and its potential benefits have not been investigated thoroughly. To this end, we perform a structured literature review, and examine the goals that LBAC can potentially fulfill, \ud the specific LBAC systems that realize these goals and the context on which LBAC depends. Our paper has four main contributions:\ud first we propose a theoretical framework for LBAC evaluation, based on goals, systems and context. Second, we formulate and apply criteria for evaluating the usefulness of an LBAC system. Third, we identify four usage scenarios for LBAC: open areas and systems, hospitals, enterprises, and finally data centers and military facilities. Fourth, we propose directions for future research:\ud (i) assessing the tradeoffs between location-based, physical and logical access control, (ii) improving the transparency of LBAC decision making, and \ud (iii) formulating design criteria for facilities and working environments for optimal LBAC usage

    Towards a user-centric and multidisciplinary framework for designing context-aware applications

    Get PDF
    Research into context-aware computing has not sufficiently addressed human and social aspects of design. Existing design frameworks are predominantly software orientated, make little use of cross-disciplinary work, and do not provide an easily transferable structure for cross-application of design principles. To address these problems, this paper proposes a multidisciplinary and user-centred design framework, and two models of context, which derive from conceptualisations within Psychology, Linguistics, and Computer Science. In a study, our framework was found to significantly improve the performance of postgraduate students at identifying the context of the user and application, and the usability issues that arise

    Supporting Device Discovery and Spontaneous Interaction with Spatial References

    Get PDF
    The RELATE interaction model is designed to support spontaneous interaction of mobile users with devices and services in their environment. The model is based on spatial references that capture the spatial relationship of a user’s device with other co-located devices. Spatial references are obtained by relative position sensing and integrated in the mobile user interface to spatially visualize the arrangement of discovered devices, and to provide direct access for interaction across devices. In this paper we discuss two prototype systems demonstrating the utility of the model in collaborative and mobile settings, and present a study on usability of spatial list and map representations for device selection

    Building distributed heterogeneous smart phone Java applications an evaluation from a development perspective

    Get PDF
    The advances in mobile phone technology have enabled such devices to be programmed to run general-purpose applications using a special edition of the Java programming language. Java is designed to be a heterogeneous programming language targeting different platforms. Such ability when coupled with the provision of high-speed mobile Internet access would open the door for a new breed of distributed mobile applications. This paper explores the capabilities and limitations of this technology and addresses the considerations that must be taken when designing and developing such distributed applications. Our findings are verified by building a test client-server system where the clients in this system are mobile phones behaving as active processing elements not just mere service requesters

    E-Voting in an ubicomp world: trust, privacy, and social implications

    Get PDF
    The advances made in technology have unchained the user from the desktop into interactions where access is anywhere, anytime. In addition, the introduction of ubiquitous computing (ubicomp) will see further changes in how we interact with technology and also socially. Ubicomp evokes a near future in which humans will be surrounded by “always-on,” unobtrusive, interconnected intelligent objects where information is exchanged seamlessly. This seamless exchange of information has vast social implications, in particular the protection and management of personal information. This research project investigates the concepts of trust and privacy issues specifically related to the exchange of e-voting information when using a ubicomp type system

    A Comparative Usability Study of Two-Factor Authentication

    Full text link
    Two-factor authentication (2F) aims to enhance resilience of password-based authentication by requiring users to provide an additional authentication factor, e.g., a code generated by a security token. However, it also introduces non-negligible costs for service providers and requires users to carry out additional actions during the authentication process. In this paper, we present an exploratory comparative study of the usability of 2F technologies. First, we conduct a pre-study interview to identify popular technologies as well as contexts and motivations in which they are used. We then present the results of a quantitative study based on a survey completed by 219 Mechanical Turk users, aiming to measure the usability of three popular 2F solutions: codes generated by security tokens, one-time PINs received via email or SMS, and dedicated smartphone apps (e.g., Google Authenticator). We record contexts and motivations, and study their impact on perceived usability. We find that 2F technologies are overall perceived as usable, regardless of motivation and/or context of use. We also present an exploratory factor analysis, highlighting that three metrics -- ease-of-use, required cognitive efforts, and trustworthiness -- are enough to capture key factors affecting 2F usability.Comment: A preliminary version of this paper appears in USEC 201

    The future of housing and technology in Japan - the Connected Homes Group Study Tour.

    Get PDF
    -Future housing; future technology; Japan

    VXA: A Virtual Architecture for Durable Compressed Archives

    Full text link
    Data compression algorithms change frequently, and obsolete decoders do not always run on new hardware and operating systems, threatening the long-term usability of content archived using those algorithms. Re-encoding content into new formats is cumbersome, and highly undesirable when lossy compression is involved. Processor architectures, in contrast, have remained comparatively stable over recent decades. VXA, an archival storage system designed around this observation, archives executable decoders along with the encoded content it stores. VXA decoders run in a specialized virtual machine that implements an OS-independent execution environment based on the standard x86 architecture. The VXA virtual machine strictly limits access to host system services, making decoders safe to run even if an archive contains malicious code. VXA's adoption of a "native" processor architecture instead of type-safe language technology allows reuse of existing "hand-optimized" decoders in C and assembly language, and permits decoders access to performance-enhancing architecture features such as vector processing instructions. The performance cost of VXA's virtualization is typically less than 15% compared with the same decoders running natively. The storage cost of archived decoders, typically 30-130KB each, can be amortized across many archived files sharing the same compression method.Comment: 14 pages, 7 figures, 2 table
    corecore