123 research outputs found

    Generalizations of Fano's Inequality for Conditional Information Measures via Majorization Theory

    Full text link
    Fano's inequality is one of the most elementary, ubiquitous, and important tools in information theory. Using majorization theory, Fano's inequality is generalized to a broad class of information measures, which contains those of Shannon and R\'{e}nyi. When specialized to these measures, it recovers and generalizes the classical inequalities. Key to the derivation is the construction of an appropriate conditional distribution inducing a desired marginal distribution on a countably infinite alphabet. The construction is based on the infinite-dimensional version of Birkhoff's theorem proven by R\'{e}v\'{e}sz [Acta Math. Hungar. 1962, 3, 188{\textendash}198], and the constraint of maintaining a desired marginal distribution is similar to coupling in probability theory. Using our Fano-type inequalities for Shannon's and R\'{e}nyi's information measures, we also investigate the asymptotic behavior of the sequence of Shannon's and R\'{e}nyi's equivocations when the error probabilities vanish. This asymptotic behavior provides a novel characterization of the asymptotic equipartition property (AEP) via Fano's inequality.Comment: 44 pages, 3 figure

    Error bounds for parallel communication channels

    Get PDF
    Error bounds for parallel communication channel

    Coding theory, information theory and cryptology : proceedings of the EIDMA winter meeting, Veldhoven, December 19-21, 1994

    Get PDF

    Coding theory, information theory and cryptology : proceedings of the EIDMA winter meeting, Veldhoven, December 19-21, 1994

    Get PDF

    Using data compression and randomization to build an unconditionally secure short key cipher

    Get PDF
    We consider the problem of constructing an unconditionally secure cipher for the case when the key length is less than the length of the encrypted message. (Unconditional security means that a computationally unbounded adversary cannot obtain information about the encrypted message without the key.) In this article, we propose data compression and randomization techniques combined with entropically-secure encryption. The resulting cipher can be used for encryption in such a way that the key length does not depend on the entropy or the length of the encrypted message; instead, it is determined by the required security level

    Secure, reliable, and efficient communication over the wiretap channel

    Get PDF
    Secure wireless communication between devices is essential for modern communication systems. Physical-layer security over the wiretap channel may provide an additional level of secrecy beyond the current cryptographic approaches. Given a sender Alice, a legitimate receiver Bob, and a malicious eavesdropper Eve, the wiretap channel occurs when Eve experiences a worse signal-to-noise ratio than Bob. Previous study of the wiretap channel has tended to make assumptions that ignore the reality of wireless communication. This thesis presents a study of short block length codes with the aim of both reliability for Bob and confusion for Eve. The standard approach to wiretap coding is shown to be very inefficient for reliability. Quantifying Eve's confusion in terms of entropy is not solved in many cases, though it is possible for codes with a moderate complexity trellis representation. Using error rate arguments, error correcting codes with steep performance curves turn out to be desirable both for reliability and confusion.Masteroppgave i informatikkINF399MAMN-INFMAMN-PRO
    corecore