128,264 research outputs found

    A Model-Driven Approach for Business Process Management

    Get PDF
    The Business Process Management is a common mechanism recommended by a high number of standards for the management of companies and organizations. In software companies this practice is every day more accepted and companies have to assume it, if they want to be competitive. However, the effective definition of these processes and mainly their maintenance and execution are not always easy tasks. This paper presents an approach based on the Model-Driven paradigm for Business Process Management in software companies. This solution offers a suitable mechanism that was implemented successfully in different companies with a tool case named NDTQ-Framework.Ministerio de EducaciĂłn y Ciencia TIN2010-20057-C03-02Junta de AndalucĂ­a TIC-578

    In my Wish List, an Automated Tool for Fail-Secure Design Analysis: an Alloy-Based Feasibility Draft

    Full text link
    A system is said to be fail-secure, sometimes confused with fail-safe, if it maintains its security requirements even in the event of some faults. Fail-secure analyses are required by some validation schemes, such as some Common Criteria or NATO certifications. However, it is an aspect of security which as been overlooked by the community. This paper attempts to shed some light on the fail-secure field of study by: giving a definition of fail-secure as used in those certification schemes, and emphasizing the differences with fail-safe; and exhibiting a first feasibility draft of a fail-secure design analysis tool based on the Alloy model checker.Comment: In Proceedings ESSS 2014, arXiv:1405.055

    Measuring the Quality of Machine Learning and Optimization Frameworks

    Get PDF
    Software frameworks are daily and extensively used in research, both for fundamental studies and applications. Researchers usually trust in the quality of these frameworks without any evidence that they are correctly build, indeed they could contain some defects that potentially could affect to thousands of already published and future papers. Considering the important role of these frameworks in the current state-of-the-art in research, their quality should be quantified to show the weaknesses and strengths of each software package. In this paper we study the main static quality properties, defined in the product quality model proposed by the ISO 25010 standard, of ten well-known frameworks. We provide a quality rating for each characteristic depending on the severity of the issues detected in the analysis. In addition, we propose an overall quality rating of 12 levels (ranging from A+ to D-) considering the ratings of all characteristics. As a result, we have data evidence to claim that the analysed frameworks are not in a good shape, because the best overall rating is just a C+ for Mahout framework, i.e., all packages need to go for a revision in the analysed features. Focusing on the characteristics individually, maintainability is by far the one which needs the biggest effort to fix the found defects. On the other hand, performance obtains the best average rating, a result which conforms to our expectations because frameworks’ authors used to take care about how fast their software runs.University of Malaga. Campus de Excelencia Internacional AndalucĂ­a Tech. We would like to say thank you to all authors of these frameworks that make research easier for all of us. This research has been partially funded by CELTIC C2017/2-2 in collaboration with companies EMERGYA and SECMOTIC with contracts #8.06/5.47.4997 and #8.06/5.47.4996. It has also been funded by the Spanish Ministry of Science and Innovation and /Junta de Andalucı́a/FEDER under contracts TIN2014-57341-R and TIN2017-88213-R, the network of smart cities CI-RTI (TIN2016-81766-REDT

    Early Quantitative Assessment of Non-Functional Requirements

    Get PDF
    Non-functional requirements (NFRs) of software systems are a well known source of uncertainty in effort estimation. Yet, quantitatively approaching NFR early in a project is hard. This paper makes a step towards reducing the impact of uncertainty due to NRF. It offers a solution that incorporates NFRs into the functional size quantification process. The merits of our solution are twofold: first, it lets us quantitatively assess the NFR modeling process early in the project, and second, it lets us generate test cases for NFR verification purposes. We chose the NFR framework as a vehicle to integrate NFRs into the requirements modeling process and to apply quantitative assessment procedures. Our solution proposal also rests on the functional size measurement method, COSMIC-FFP, adopted in 2003 as the ISO/IEC 19761 standard. We extend its use for NFR testing purposes, which is an essential step for improving NFR development and testing effort estimates, and consequently for managing the scope of NFRs. We discuss the advantages of our approach and the open questions related to its design as well

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India
    • 

    corecore