33 research outputs found

    Erasable PUFs: Formal treatment and generic design

    Get PDF
    Physical Unclonable Functions (PUFs) have not only been suggested as new key storage mechanism, but - in the form of so-called "Strong PUFs"- also as cryptographic primitives in advanced schemes, including key exchange, oblivious transfer, or secure multi-party computation. This notably extends their application spectrum, and has led to a sequence of publications at leading venues such as IEEE S&P, CRYPTO, and EUROCRYPT in the past[3,6,10,11,29, 41]. However, one important unresolved problem is that adversaries can break the security of all these advanced protocols if they gain physical access to the employed Strong PUFs after protocol completion [41]. It has been formally proven[49] that this issue cannot be overcome by techniques on the protocol side alone, but requires resolution on the hardware level - the only fully effective known countermeasure being so-called Erasable PUFs. Building on this work, this paper is the first to describe a generic method how any given silicon Strong PUF with digital CRP-interface can be turned into an Erasable PUFs[36]. We describe how the Strong PUF can be surrounded with a trusted control logic that allows the blocking (or "erasure") of single CRPs. We implement our approach, which we call "GeniePUF", on FPGA, reporting detailed performance data and practicality figures. Furthermore, we develop the first comprehensive definitional framework for Erasable PUFs. Our work so re-establishes the effective usability of Strong PUFs in advanced cryptographic applications, and in the realistic case adversaries get access to the Strong PUF after protocol completion

    Programmable access-controlled and generic erasable PUF design and its applications

    Get PDF
    Physical unclonable functions (PUFs) have not only been suggested as a new key storage mechanism, but—in the form of so-called strong PUFs—also as cryptographic primitives in advanced schemes, including key exchange, oblivious transfer, or secure multi-party computation. This notably extends their application spectrum, and has led to a sequence of publications at leading venues such as IEEE S&P, CRYPTO, and EUROCRYPT in the past. However, one important unresolved problem is that adversaries can break the security of all these advanced protocols if they gain physical access to the employed strong PUFs after protocol completion. It has been formally proven that this issue cannot be overcome by techniques on the protocol side alone, but requires resolution on the hardware level—the only fully effective known countermeasure being so-called erasable PUFs. Building on this work, this paper is the first to describe a generic method of how any given silicon strong PUF with digital CRP-interface can be turned into an erasable PUF. We describe how the strong PUF can be surrounded with a trusted control logic that allows the blocking (or “erasure”) of single CRP. We implement our approach, which we call “GeniePUF,” on FPGA, reporting detailed performance data and practicality figures. Furthermore, we develop the first comprehensive definitional framework for erasable PUFs. Our work so re-establishes the effective usability of strong PUFs in advanced cryptographic applications, and in the realistic case, adversaries get access to the strong PUF after protocol completion. As an extension to earlier versions of this work, we also introduce a generalization of erasable PUFs in this paper, which we call programmable access-controlled PUFs (PAC PUFs). We detail their definition, and discuss various exemplary applications of theirs

    Memory Erasability Amplification

    Get PDF
    Erasable memory is an important resource for designing practical cryptographic protocols that are secure against adaptive attacks. Many practical memory devices such as solid state drives, hard disks, or file systems are not perfectly erasable because a deletion operation leaves traces of the deleted data in the system. A number of methods for constructing a large erasable memory from a small one, e.g., using encryption, have been proposed. Despite the importance of erasable memory in cryptography, no formal model has been proposed that allows one to formally analyse such memory constructions or cryptographic protocols relying on erasable memory. The contribution of this paper is three-fold. First, we provide a formal model of erasable memory. A memory device allows a user to store, retrieve, and delete data, and it is characterised by a leakage function defining the extent to which erased data is still accessible to an adversary. Second, we investigate how the erasability of such memories can be amplified. We provide a number of constructions of memories with strong erasability guarantees from memories with weaker guarantees. One of these constructions of perfectly erasable memories from imperfectly erasable ones can be considered as the prototypical application of Canetti et al.\u27s All-or-Nothing Transform (AoNT). Motivated by this construction, we propose some new and better AoNTs that are either perfectly or computationally secure. These AoNTs are of possible independent interest. Third, we show (in the constructive cryptography framework) how the construction of erasable memory and its use in cryptographic protocols (for example to achieve adaptive security) can naturally be composed to obtain provable security of the overall protocol

    Flash-based security primitives: Evolution, challenges and future directions

    Get PDF
    Over the last two decades, hardware security has gained increasing attention in academia and industry. Flash memory has been given a spotlight in recent years, with the question of whether or not it can prove useful in a security role. Because of inherent process variation in the characteristics of flash memory modules, they can provide a unique fingerprint for a device and have thus been proposed as locations for hardware security primitives. These primitives include physical unclonable functions (PUFs), true random number generators (TRNGs), and integrated circuit (IC) counterfeit detection. In this paper, we evaluate the efficacy of flash memory-based security primitives and categorize them based on the process variations they exploit, as well as other features. We also compare and evaluate flash-based security primitives in order to identify drawbacks and essential design considerations. Finally, we describe new directions, challenges of research, and possible security vulnerabilities for flash-based security primitives that we believe would benefit from further exploration

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Design of Discrete-time Chaos-Based Systems for Hardware Security Applications

    Get PDF
    Security of systems has become a major concern with the advent of technology. Researchers are proposing new security solutions every day in order to meet the area, power and performance specifications of the systems. The additional circuit required for security purposes can consume significant area and power. This work proposes a solution which utilizes discrete-time chaos-based logic gates to build a system which addresses multiple hardware security issues. The nonlinear dynamics of chaotic maps is leveraged to build a system that mitigates IC counterfeiting, IP piracy, overbuilding, disables hardware Trojan insertion and enables authentication of connecting devices (such as IoT and mobile). Chaos-based systems are also used to generate pseudo-random numbers for cryptographic applications.The chaotic map is the building block for the design of discrete-time chaos-based oscillator. The analog output of the oscillator is converted to digital value using a comparator in order to build logic gates. The logic gate is reconfigurable since different parameters in the circuit topology can be altered to implement multiple Boolean functions using the same system. The tuning parameters are control input, bifurcation parameter, iteration number and threshold voltage of the comparator. The proposed system is a hybrid between standard CMOS logic gates and reconfigurable chaos-based logic gates where original gates are replaced by chaos-based gates. The system works in two modes: logic locking and authentication. In logic locking mode, the goal is to ensure that the system achieves logic obfuscation in order to mitigate IC counterfeiting. The secret key for logic locking is made up of the tuning parameters of the chaotic oscillator. Each gate has 10-bit key which ensures that the key space is large which exponentially increases the computational complexity of any attack. In authentication mode, the aim of the system is to provide authentication of devices so that adversaries cannot connect to devices to learn confidential information. Chaos-based computing system is susceptible to process variation which can be leveraged to build a chaos-based PUF. The proposed system demonstrates near ideal PUF characteristics which means systems with large number of primary outputs can be used for authenticating devices

    Nano-intrinsic security primitives for internet of everything

    Get PDF
    With the advent of Internet-enabled electronic devices and mobile computer systems, maintaining data security is one of the most important challenges in modern civilization. The innovation of physically unclonable functions (PUFs) shows great potential for enabling low-cost low-power authentication, anti-counterfeiting and beyond on the semiconductor chips. This is because secrets in a PUF are hidden in the randomness of the physical properties of desirably identical devices, making it extremely difficult, if not impossible, to extract them. Hence, the basic idea of PUF is to take advantage of inevitable non-idealities in the physical domain to create a system that can provide an innovative way to secure device identities, sensitive information, and their communications. While the physical variation exists everywhere, various materials, systems, and technologies have been considered as the source of unpredictable physical device variation in large scales for generating security primitives. The purpose of this project is to develop emerging solid-state memory-based security primitives and examine their robustness as well as feasibility. Firstly, the author gives an extensive overview of PUFs. The rationality, classification, and application of PUF are discussed. To objectively compare the quality of PUFs, the author formulates important PUF properties and evaluation metrics. By reviewing previously proposed constructions ranging from conventional standard complementary metal-oxide-semiconductor (CMOS) components to emerging non-volatile memories, the quality of different PUFs classes are discussed and summarized. Through a comparative analysis, emerging non-volatile redox-based resistor memories (ReRAMs) have shown the potential as promising candidates for the next generation of low-cost, low-power, compact in size, and secure PUF. Next, the author presents novel approaches to build a PUF by utilizing concatenated two layers of ReRAM crossbar arrays. Upon concatenate two layers, the nonlinear structure is introduced, and this results in the improved uniformity and the avalanche characteristic of the proposed PUF. A group of cell readout method is employed, and it supports a massive pool of challenge-response pairs of the nonlinear ReRAM-based PUF. The non-linear PUF construction is experimentally assessed using the evaluation metrics, and the quality of randomness is verified using predictive analysis. Last but not least, random telegraph noise (RTN) is studied as a source of entropy for a true random number generation (TRNG). RTN is usually considered a disadvantageous feature in the conventional CMOS designs. However, in combination with appropriate readout scheme, RTN in ReRAM can be used as a novel technique to generate quality random numbers. The proposed differential readout-based design can maintain the quality of output by reducing the effect of the undesired noise from the whole system, while the controlling difficulty of the conventional readout method can be significantly reduced. This is advantageous as the differential readout circuit can embrace the resistance variation features of ReRAMs without extensive pre-calibration. The study in this thesis has the potential to enable the development of cost-efficient and lightweight security primitives that can be integrated into modern computer mobile systems and devices for providing a high level of security

    Lightweight Protocols and Applications for Memory-Based Intrinsic Physically Unclonable Functions on Commercial Off-The-Shelve Devices

    Get PDF
    We are currently living in the era in which through the ever-increasing dissemination of inter-connected embedded devices, the Internet-of-Things manifests. Although such end-point devices are commonly labeled as ``smart gadgets'' and hence they suggest to implement some sort of intelligence, from a cyber-security point of view, more then often the opposite holds. The market force in the branch of commercial embedded devices leads to minimizing production costs and time-to-market. This widespread trend has a direct, disastrous impact on the security properties of such devices. The majority of currently used devices or those that will be produced in the future do not implement any or insufficient security mechanisms. Foremost the lack of secure hardware components often mitigates the application of secure protocols and applications. This work is dedicated to a fundamental solution statement, which allows to retroactively secure commercial off-the-shelf devices, which otherwise are exposed to various attacks due to the lack of secure hardware components. In particular, we leverage the concept of Physically Unclonable Functions (PUFs), to create hardware-based security anchors in standard hardware components. For this purpose, we exploit manufacturing variations in Static Random-Access Memory (SRAM) and Dynamic Random-Access Memory modules to extract intrinsic memory-based PUF instances and building on that, to develop secure and lightweight protocols and applications. For this purpose, we empirically evaluate selected and representative device types towards their PUF characteristics. In a further step, we use those device types, which qualify due to the existence of desired PUF instances for subsequent development of security applications and protocols. Subsequently, we present various software-based security solutions which are specially tailored towards to the characteristic properties of embedded devices. More precisely, the proposed solutions comprise a secure boot architecture as well as an approach to protect the integrity of the firmware by binding it to the underlying hardware. Furthermore, we present a lightweight authentication protocol which leverages a novel DRAM-based PUF type. Finally, we propose a protocol, which allows to securely verify the software state of remote embedded devices
    corecore