1,422 research outputs found

    Security of two recent constant-round password authenticated group key exchange schemes

    Get PDF
    When humans interact with machines in their daily networks, it is important that security of the communications is offered, and where the involved shared secrets used to achieve this are easily remembered by humans. Password-based authenticated group key exchange (PAGKE) schemes allow group users to share a session key based on a human-memorizable password. In this paper, we consider two PAGKE schemes that build on the seminal scheme of Burmester and Desmedt. Weshow an undetectable online dictionary attack on the first scheme, and exploit the partnering definition to break the key indistinguishability of the second scheme

    Structure-Preserving Smooth Projective Hashing

    Get PDF
    International audienceSmooth projective hashing has proven to be an extremely useful primitive, in particular when used in conjunction with commitments to provide implicit decommitment. This has lead to applications proven secure in the UC framework, even in presence of an adversary which can do adaptive corruptions, like for example Password Authenticated Key Exchange (PAKE), and 1-out-of-m Oblivious Transfer (OT). However such solutions still lack in efficiency, since they heavily scale on the underlying message length. Structure-preserving cryptography aims at providing elegant and efficient schemes based on classical assumptions and standard group operations on group elements. Recent trend focuses on constructions of structure- preserving signatures, which require message, signature and verification keys to lie in the base group, while the verification equations only consist of pairing-product equations. Classical constructions of Smooth Projective Hash Function suffer from the same limitation as classical signatures: at least one part of the computation (messages for signature, witnesses for SPHF) is a scalar. In this work, we introduce and instantiate the concept of Structure- Preserving Smooth Projective Hash Function, and give as applications more efficient instantiations for one-round PAKE and three-round OT, and information retrieval thanks to Anonymous Credentials, all UC- secure against adaptive adversaries

    Input-shrinking functions: theory and application

    Get PDF
    In this thesis, we contribute to the emerging field of the Leakage-Resilient Cryptography by studying the problem of secure data storage on hardware that may leak information, introducing a new primitive, a leakage-resilient storage, and showing two different constructions of such storage scheme provably secure against a class of leakage functions that can depend only on some restricted part of the memory and against a class of computationally weak leakage functions, e.g. functions computable by small circuits, respectively. Our results come with instantiations and analysis of concrete parameters. Furthermore, as second contribution, we present our implementation in C programming language, using the cryptographic library of the OpenSSL project, of a two-party Authenticated Key Exchange (AKE) protocol, which allows a client and a server, who share a huge secret file, to securely compute a shared key, providing client-to-server authentication, also in the presence of active attackers. Following the work of Cash et al. (TCC 2007), we based our construction on a Weak Key Exchange (WKE) protocol, developed in the BRM, and a Password-based Authenticated Key Exchange (PAKE) protocol secure in the Universally Composable (UC) framework. The WKE protocol showed by Cash et al. uses an explicit construction of averaging sampler, which uses less random bits than the random choice but does not seem to be efficiently implementable in practice. In this thesis, we propose a WKE protocol similar but simpler than that one of Cash et al.: our protocol uses more randomness than the Cash et al.'s one, as it simply uses random choice instead of averaging sampler, but we are able to show an efficient implementation of it. Moreover, we formally adapt the security analysis of the WKE protocol of Cash et al. to our WKE protocol. To complete our AKE protocol, we implement the PAKE protocol showed secure in the UC framework by Abdalla et al. (CT-RSA 2008), which is more efficient than the Canetti et al.'s UC-PAKE protocol (EuroCrypt 2005) used in Cash et al.'s work. In our implementation of the WKE protocol, to achieve small constant communication complexity and amount of randomness, we rely on the Random Oracle (RO) model. However, we would like to note that in our implementation of the AKE protocol we need also a UC-PAKE protocol which already relies on RO, as it is impossible to achieve UC-PAKE in the standard model. In our work we focus not only on the theoretical aspects of the area, providing formal models and proofs, but also on the practical ones, analyzing instantiations, concrete parameters and implementation of the proposed solutions, to contribute to bridge the gap between theory and practice in this field

    Key exchange with the help of a public ledger

    Full text link
    Blockchains and other public ledger structures promise a new way to create globally consistent event logs and other records. We make use of this consistency property to detect and prevent man-in-the-middle attacks in a key exchange such as Diffie-Hellman or ECDH. Essentially, the MitM attack creates an inconsistency in the world views of the two honest parties, and they can detect it with the help of the ledger. Thus, there is no need for prior knowledge or trusted third parties apart from the distributed ledger. To prevent impersonation attacks, we require user interaction. It appears that, in some applications, the required user interaction is reduced in comparison to other user-assisted key-exchange protocols

    One Time Secret Key Mechanism for Mobile Communication

    Full text link

    Zero-Knowledge Password Policy Check from Lattices

    Get PDF
    Passwords are ubiquitous and most commonly used to authenticate users when logging into online services. Using high entropy passwords is critical to prevent unauthorized access and password policies emerged to enforce this requirement on passwords. However, with current methods of password storage, poor practices and server breaches have leaked many passwords to the public. To protect one's sensitive information in case of such events, passwords should be hidden from servers. Verifier-based password authenticated key exchange, proposed by Bellovin and Merrit (IEEE S\&P, 1992), allows authenticated secure channels to be established with a hash of a password (verifier). Unfortunately, this restricts password policies as passwords cannot be checked from their verifier. To address this issue, Kiefer and Manulis (ESORICS 2014) proposed zero-knowledge password policy check (ZKPPC). A ZKPPC protocol allows users to prove in zero knowledge that a hash of the user's password satisfies the password policy required by the server. Unfortunately, their proposal is not quantum resistant with the use of discrete logarithm-based cryptographic tools and there are currently no other viable alternatives. In this work, we construct the first post-quantum ZKPPC using lattice-based tools. To this end, we introduce a new randomised password hashing scheme for ASCII-based passwords and design an accompanying zero-knowledge protocol for policy compliance. Interestingly, our proposal does not follow the framework established by Kiefer and Manulis and offers an alternate construction without homomorphic commitments. Although our protocol is not ready to be used in practice, we think it is an important first step towards a quantum-resistant privacy-preserving password-based authentication and key exchange system

    Sufficient condition for ephemeral key-leakage resilient tripartite key exchange

    Get PDF
    17th Australasian Conference on Information Security and Privacy, ACISP 2012; Wollongong, NSW; Australia; 9 July 2012 through 11 July 2012Tripartite (Diffie-Hellman) Key Exchange (3KE), introduced by Joux (ANTS-IV 2000), represents today the only known class of group key exchange protocols, in which computation of unauthenticated session keys requires one round and proceeds with minimal computation and communication overhead. The first one-round authenticated 3KE version that preserved the unique efficiency properties of the original protocol and strengthened its security towards resilience against leakage of ephemeral (session-dependent) secrets was proposed recently by Manulis, Suzuki, and Ustaoglu (ICISC 2009). In this work we explore sufficient conditions for building such protocols. We define a set of admissible polynomials and show how their construction generically implies 3KE protocols with the desired security and efficiency properties. Our result generalizes the previous 3KE protocol and gives rise to many new authenticated constructions, all of which enjoy forward secrecy and resilience to ephemeral key-leakage under the gap Bilinear Diffie-Hellman assumption in the random oracle model. © 2012 Springer-Verlag

    How Not to Create an Isogeny-Based PAKE

    Get PDF
    Isogeny-based key establishment protocols are believed to be resistant to quantum cryptanalysis. Two such protocols---supersingular isogeny Diffie-Hellman (SIDH) and commutative supersingular isogeny Diffie-Hellman (CSIDH)---are of particular interest because of their extremely small public key sizes compared with other post-quantum candidates. Although SIDH and CSIDH allow us to achieve key establishment against passive adversaries and authenticated key establishment (using generic constructions), there has been little progress in the creation of provably-secure isogeny-based password-authenticated key establishment protocols (PAKEs). This is in stark contrast with the classical setting, where the Diffie-Hellman protocol can be tweaked in a number of straightforward ways to construct PAKEs, such as EKE, SPEKE, PAK (and variants), J-PAKE, and Dragonfly. Although SIDH and CSIDH superficially resemble Diffie-Hellman, it is often difficult or impossible to ``translate\u27\u27 these Diffie-Hellman-based protocols to the SIDH or CSIDH setting; worse still, even when the construction can be ``translated,\u27\u27 the resultant protocol may be insecure, even if the Diffie-Hellman based protocol is secure. In particular, a recent paper of Terada and Yoneyama and ProvSec 2019 purports to instantiate encrypted key exchange (EKE) over SIDH and CSIDH; however, there is a subtle problem which leads to an offline dictionary attack on the protocol, rendering it insecure. In this work we present man-in-the-middle and offline dictionary attacks on isogeny-based PAKEs from the literature, and explain why other classical constructions do not ``translate\u27\u27 securely to the isogeny-based setting

    SoK : password-authenticated key exchange - theory, practice, standardization and real-world lessons

    Get PDF
    Password-authenticated key exchange (PAKE) is a major area of cryptographic protocol research and practice. Many PAKE proposals have emerged in the 30 years following the original 1992 Encrypted Key Exchange (EKE), some accompanied by new theoretical models to support rigorous analysis. To reduce confusion and encourage practical development, major standards bodies including IEEE, ISO/IEC and the IETF have worked towards standardizing PAKE schemes, with mixed results. Challenges have included contrasts between heuristic protocols and schemes with security proofs, and subtleties in the assumptions of such proofs rendering some schemes unsuitable for practice. Despite initial difficulty identifying suitable use cases, the past decade has seen PAKE adoption in numerous large-scale applications such as Wi-Fi, Apple's iCloud, browser synchronization, e-passports, and the Thread network protocol for Internet of Things devices. Given this backdrop, we consolidate three decades of knowledge on PAKE protocols, integrating theory, practice, standardization and real-world experience. We provide a thorough and systematic review of the field, a summary of the state-of-the-art, a taxonomy to categorize existing protocols, and a comparative analysis of protocol performance using representative schemes from each taxonomy category. We also review real-world applications, summarize lessons learned, and highlight open research problems related to PAKE protocols
    corecore