75,900 research outputs found

    Cloud Computing Security: A Survey

    Get PDF
    Today, the world of Internet and Information technology, which is turned into a crucial part of human life, is growing rapidly. In this direction, the needs of societies` members including: information security, fast processing, immediate & dynamic access and the most important one, cost saving have been taken into consideration. Security issues used to be the main challenge of the systems` users constantly. A crucial achievement, by which users` data are accessed broadly & comprehensively, is cloud computing and storage in clouds, but this requires establishing data security in a very reliable environment. Cloud based computing, as a new generation of computing infrastructure, was created to reduce the costs of hardware & software resource management and it`s success is due to it`s efficacy, flexibility and it`s security in comparison to other computing approaches. Supporting security of stored data is one of the difficulties and issues discussed in cloud computing field. Our goal is to understand present challenges and solutions in cloud based environment; furthermore, we investigate present algorithms, in terms of application`s speed both in cloud based environment and local networks

    Securing Fog Federation from Behavior of Rogue Nodes

    Get PDF
    As the technological revolution advanced information security evolved with an increased need for confidential data protection on the internet. Individuals and organizations typically prefer outsourcing their confidential data to the cloud for processing and storage. As promising as the cloud computing paradigm is, it creates challenges; everything from data security to time latency issues with data computation and delivery to end-users. In response to these challenges CISCO introduced the fog computing paradigm in 2012. The intent was to overcome issues such as time latency and communication overhead and to bring computing and storage resources close to the ground and the end-users. Fog computing was, however, considered an extension of cloud computing and as such, inherited the same security and privacy challenges encountered by traditional cloud computing. These challenges accelerated the research community\u27s efforts to find practical solutions. In this dissertation, we present three approaches for individual and organizational data security and protection while that data is in storage in fog nodes or in the cloud. We also consider the protection of these data while in transit between fog nodes and the cloud, and against rogue fog nodes, man-in-the-middle attacks, and curious cloud service providers. The techniques described successfully satisfy each of the main security objectives of confidentiality, integrity, and availability. Further we study the impact of rogue fog nodes on end-user devices. These approaches include a new concept, the Fog-Federation (FF): its purpose to minimize communication overhead and time latency between the Fog Nodes (FNs) and the Cloud Service Provider (CSP) during the time the system is unavailable as a rogue Fog Node (FN) is being ousted. Further, we considered the minimization of data in danger of breach by rogue fog nodes. We demonstrate the efficiency and feasibility of each approach by implementing simulations and analyzing security and performance

    From security to assurance in the cloud: a survey

    Get PDF
    The cloud computing paradigm has become a mainstream solution for the deployment of business processes and applications. In the public cloud vision, infrastructure, platform, and software services are provisioned to tenants (i.e., customers and service providers) on a pay-as-you-go basis. Cloud tenants can use cloud resources at lower prices, and higher performance and flexibility, than traditional on-premises resources, without having to care about infrastructure management. Still, cloud tenants remain concerned with the cloud's level of service and the nonfunctional properties their applications can count on. In the last few years, the research community has been focusing on the nonfunctional aspects of the cloud paradigm, among which cloud security stands out. Several approaches to security have been described and summarized in general surveys on cloud security techniques. The survey in this article focuses on the interface between cloud security and cloud security assurance. First, we provide an overview of the state of the art on cloud security. Then, we introduce the notion of cloud security assurance and analyze its growing impact on cloud security approaches. Finally, we present some recommendations for the development of next-generation cloud security and assurance solutions

    State of the Art Intrusion Detection System for Cloud Computing

    Get PDF
    The term Cloud computing is not new anymore in computing technology. This form of computing technology previously considered only as marketing term, but today Cloud computing not only provides innovative improvements in resource utilisation but it also creates a new opportunities in data protection mechanisms where the advancement of intrusion detection technologies  are blooming rapidly. From the perspective of security, Cloud computing also introduces concerns about data protection and intrusion detection mechanism. This paper surveys, explores and informs researchers about the latest developed Cloud Intrusion Detection Systems by providing a comprehensive taxonomy and investigating possible solutions to detect intrusions in cloud computing systems. As a result, we provide a comprehensive review of Cloud Intrusion Detection System research, while highlighting the specific properties of Cloud Intrusion Detection System. We also present taxonomy on the key issues in Cloud Intrusion Detection System area and discuss the different approaches taken to solve the issues. We conclude the paper with a critical analysis of challenges that have not fully solved

    Tripod of Requirements in Horizontal Heterogeneous Mobile Cloud Computing

    Full text link
    Recent trend of mobile computing is emerging toward executing resource-intensive applications in mobile devices regardless of underlying resource restrictions (e.g. limited processor and energy) that necessitate imminent technologies. Prosperity of cloud computing in stationary computers breeds Mobile Cloud Computing (MCC) technology that aims to augment computing and storage capabilities of mobile devices besides conserving energy. However, MCC is more heterogeneous and unreliable (due to wireless connectivity) compare to cloud computing. Problems like variations in OS, data fragmentation, and security and privacy discourage and decelerate implementation and pervasiveness of MCC. In this paper, we describe MCC as a horizontal heterogeneous ecosystem and identify thirteen critical metrics and approaches that influence on mobile-cloud solutions and success of MCC. We divide them into three major classes, namely ubiquity, trust, and energy efficiency and devise a tripod of requirements in MCC. Our proposed tripod shows that success of MCC is achievable by reducing mobility challenges (e.g. seamless connectivity, fragmentation), increasing trust, and enhancing energy efficiency

    A Study on Data Protection in Cloud Environment

    Get PDF
    Data protection in the online environment pertains to the safeguarding of sensitive or important data kept, analyzed, or sent in cloud-based systems. It entails assuring data confidentiality, integrity, and availability, as well as adhering to appropriate data protection requirements. In a nutshell, cloud data protection seeks to protect data against unauthorized access, deletion, or breaches while retaining its accuracy and accessible to authorized users. This is accomplished in the cloud environment using various security measures, encryption approaches, access controls, disaster recovery and backup processes, and constant monitoring and threat detection.  The research significance of data protection in the cloud environment can be summarized as follows: Security and Privacy: Research in data protection in the cloud helps address the security and privacy concerns associated with storing and processing sensitive data in cloud-based systems. It explores and develops advanced security mechanisms, encryption techniques, and access controls to protect data from unauthorized access, data breaches, and privacy violations. Trust and Confidence: Research in data protection contributes to building trust and confidence in cloud computing. By developing robust security solutions and demonstrating their effectiveness, research helps alleviate concerns about data security and privacy, fostering greater adoption of cloud services by organizations and individuals. Compliance and Regulations: Cloud computing often involves compliance with data protection regulations and industry standards. Research in this area explores the legal and regulatory aspects of data protection in the cloud and helps organizations understand and comply with relevant requirements. Data Resilience and Recovery: Research in data protection focuses on ensuring data resilience and developing efficient data recovery mechanisms in the cloud. It explores backup and disaster recovery strategies, data replication techniques, and data loss prevention methods to minimize downtime, recover data promptly, and maintain business continuity in the event of system failures or disasters. By addressing these research areas, studies on data protection in the cloud environment contribute to enhancing security, privacy, compliance, and resilience in cloud computing. They provide valuable insights, practical solutions, and guidelines for organizations and service providers to protect data effectively and maintain the trust of users in cloud-based services. The weighted product method approach is commonly used to choose the best data protection in cloud environment. CCSS1, CCSS2, CCSS3, CCSS4, CCSS5 data visibility, data integrity, Maintains compliance, Data security, Data storage. From the result it is seen that CCSS2 got highest rank whereas CCSS5 got lowest rank According to the results, CCSS2 was ranked first

    A CROSS-COUNTRY STUDY OF CLOUD COMPUTING POLICY AND REGULATION IN HEALTHCARE

    Get PDF
    International health IT policy currently supports the move towards cloud computing. Governments, industry leaders and advocacy groups are keen to build confidence among health professionals to adopt cloud-based solutions in healthcare. However, the potential benefits from cloud computing need to be evaluated against the risks. This research is a comparative study on U.S and EU health professionals´ views on the potential benefits and risks from cloud computing. The results from surveying healthcare organizations in the U.S and five EU countries (France, Germany, the Netherlands, Sweden and the UK) identify differences across countries in health IT policy, incentives for adoption, privacy and security, and trust in third party suppliers. Our findings show that privacy and security are important issus for healthcare organizations, yet differences exist between the U.S and across EU Member States in how these concepts are viewed. U.S laws and EU Directives on data protection are more advanced than other international regulatory systems. Our study provides insights on cross-jurisdictional approaches to personal data and privacy, regulations and rules on health data export, how countries interpret and implement different data protection regulations and rules, and the practical implementation of regulatory rules using a comparative research method. \

    Cloud Forensic: Issues, Challenges and Solution Models

    Full text link
    Cloud computing is a web-based utility model that is becoming popular every day with the emergence of 4th Industrial Revolution, therefore, cybercrimes that affect web-based systems are also relevant to cloud computing. In order to conduct a forensic investigation into a cyber-attack, it is necessary to identify and locate the source of the attack as soon as possible. Although significant study has been done in this domain on obstacles and its solutions, research on approaches and strategies is still in its development stage. There are barriers at every stage of cloud forensics, therefore, before we can come up with a comprehensive way to deal with these problems, we must first comprehend the cloud technology and its forensics environment. Although there are articles that are linked to cloud forensics, there is not yet a paper that accumulated the contemporary concerns and solutions related to cloud forensic. Throughout this chapter, we have looked at the cloud environment, as well as the threats and attacks that it may be subjected to. We have also looked at the approaches that cloud forensics may take, as well as the various frameworks and the practical challenges and limitations they may face when dealing with cloud forensic investigations.Comment: 23 pages; 6 figures; 4 tables. Book chapter of the book titled "A Practical Guide on Security and Privacy in Cyber Physical Systems Foundations, Applications and Limitations", World Scientific Series in Digital Forensics and Cybersecurit
    • …
    corecore