50,288 research outputs found

    Percolation and Connectivity in the Intrinsically Secure Communications Graph

    Get PDF
    The ability to exchange secret information is critical to many commercial, governmental, and military networks. The intrinsically secure communications graph (iS-graph) is a random graph which describes the connections that can be securely established over a large-scale network, by exploiting the physical properties of the wireless medium. This paper aims to characterize the global properties of the iS-graph in terms of: (i) percolation on the infinite plane, and (ii) full connectivity on a finite region. First, for the Poisson iS-graph defined on the infinite plane, the existence of a phase transition is proven, whereby an unbounded component of connected nodes suddenly arises as the density of legitimate nodes is increased. This shows that long-range secure communication is still possible in the presence of eavesdroppers. Second, full connectivity on a finite region of the Poisson iS-graph is considered. The exact asymptotic behavior of full connectivity in the limit of a large density of legitimate nodes is characterized. Then, simple, explicit expressions are derived in order to closely approximate the probability of full connectivity for a finite density of legitimate nodes. The results help clarify how the presence of eavesdroppers can compromise long-range secure communication.Comment: Submitted for journal publicatio

    Wireless Secrecy in Large-Scale Networks

    Get PDF
    The ability to exchange secret information is critical to many commercial, governmental, and military networks. The intrinsically secure communications graph (iS-graph) is a random graph which describes the connections that can be securely established over a large-scale network, by exploiting the physical properties of the wireless medium. This paper provides an overview of the main properties of this new class of random graphs. We first analyze the local properties of the iS-graph, namely the degree distributions and their dependence on fading, target secrecy rate, and eavesdropper collusion. To mitigate the effect of the eavesdroppers, we propose two techniques that improve secure connectivity. Then, we analyze the global properties of the iS-graph, namely percolation on the infinite plane, and full connectivity on a finite region. These results help clarify how the presence of eavesdroppers can compromise secure communication in a large-scale network.Comment: To appear: Proc. IEEE Information Theory and Applications Workshop (ITA'11), San Diego, CA, Feb. 2011, pp. 1-10, Invited Pape

    Continuum Percolation in the Intrinsically Secure Communications Graph

    Full text link
    The intrinsically secure communications graph (iS-graph) is a random graph which captures the connections that can be securely established over a large-scale network, in the presence of eavesdroppers. It is based on principles of information-theoretic security, widely accepted as the strictest notion of security. In this paper, we are interested in characterizing the global properties of the iS-graph in terms of percolation on the infinite plane. We prove the existence of a phase transition in the Poisson iS-graph, whereby an unbounded component of securely connected nodes suddenly arises as we increase the density of legitimate nodes. Our work shows that long-range communication in a wireless network is still possible when a secrecy constraint is present.Comment: Accepted in the IEEE International Symposium on Information Theory and its Applications (ISITA'10), Taichung, Taiwan, Oct. 201

    Quantum Security for the Physical Layer

    Full text link
    The physical layer describes how communication signals are encoded and transmitted across a channel. Physical security often requires either restricting access to the channel or performing periodic manual inspections. In this tutorial, we describe how the field of quantum communication offers new techniques for securing the physical layer. We describe the use of quantum seals as a unique way to test the integrity and authenticity of a communication channel and to provide security for the physical layer. We present the theoretical and physical underpinnings of quantum seals including the quantum optical encoding used at the transmitter and the test for non-locality used at the receiver. We describe how the envisioned quantum physical sublayer senses tampering and how coordination with higher protocol layers allow quantum seals to influence secure routing or tailor data management methods. We conclude by discussing challenges in the development of quantum seals, the overlap with existing quantum key distribution cryptographic services, and the relevance of a quantum physical sublayer to the future of communication security.Comment: 7 pages, 6 figure
    • …
    corecore