281 research outputs found

    Security for Wiretap Networks via Rank-Metric Codes

    Full text link
    The problem of securing a network coding communication system against a wiretapper adversary is considered. The network implements linear network coding to deliver nn packets from source to each receiver, and the wiretapper can eavesdrop on μ\mu arbitrarily chosen links. A coding scheme is proposed that can achieve the maximum possible rate of k=n−μk=n-\mu packets that are information-theoretically secure from the adversary. A distinctive feature of our scheme is that it is universal: it can be applied on top of any communication network without requiring knowledge of or any modifications on the underlying network code. In fact, even a randomized network code can be used. Our approach is based on Rouayheb-Soljanin's formulation of a wiretap network as a generalization of the Ozarow-Wyner wiretap channel of type II. Essentially, the linear MDS code in Ozarow-Wyner's coset coding scheme is replaced by a maximum-rank-distance code over an extension of the field in which linear network coding operations are performed.Comment: 5 pages, to be published at the 2008 IEEE International Symposium on Information Theor

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Lists that are smaller than their parts: A coding approach to tunable secrecy

    Get PDF
    We present a new information-theoretic definition and associated results, based on list decoding in a source coding setting. We begin by presenting list-source codes, which naturally map a key length (entropy) to list size. We then show that such codes can be analyzed in the context of a novel information-theoretic metric, \epsilon-symbol secrecy, that encompasses both the one-time pad and traditional rate-based asymptotic metrics, but, like most cryptographic constructs, can be applied in non-asymptotic settings. We derive fundamental bounds for \epsilon-symbol secrecy and demonstrate how these bounds can be achieved with MDS codes when the source is uniformly distributed. We discuss applications and implementation issues of our codes.Comment: Allerton 2012, 8 page

    New Parameters of Linear Codes Expressing Security Performance of Universal Secure Network Coding

    Full text link
    The universal secure network coding presented by Silva et al. realizes secure and reliable transmission of a secret message over any underlying network code, by using maximum rank distance codes. Inspired by their result, this paper considers the secure network coding based on arbitrary linear codes, and investigates its security performance and error correction capability that are guaranteed independently of the underlying network code. The security performance and error correction capability are said to be universal when they are independent of underlying network codes. This paper introduces new code parameters, the relative dimension/intersection profile (RDIP) and the relative generalized rank weight (RGRW) of linear codes. We reveal that the universal security performance and universal error correction capability of secure network coding are expressed in terms of the RDIP and RGRW of linear codes. The security and error correction of existing schemes are also analyzed as applications of the RDIP and RGRW.Comment: IEEEtran.cls, 8 pages, no figure. To appear in Proc. 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton 2012). Version 2 added an exact expression of the universal error correction capability in terms of the relative generalized rank weigh

    Secure Partial Repair in Wireless Caching Networks with Broadcast Channels

    Full text link
    We study security in partial repair in wireless caching networks where parts of the stored packets in the caching nodes are susceptible to be erased. Let us denote a caching node that has lost parts of its stored packets as a sick caching node and a caching node that has not lost any packet as a healthy caching node. In partial repair, a set of caching nodes (among sick and healthy caching nodes) broadcast information to other sick caching nodes to recover the erased packets. The broadcast information from a caching node is assumed to be received without any error by all other caching nodes. All the sick caching nodes then are able to recover their erased packets, while using the broadcast information and the nonerased packets in their storage as side information. In this setting, if an eavesdropper overhears the broadcast channels, it might obtain some information about the stored file. We thus study secure partial repair in the senses of information-theoretically strong and weak security. In both senses, we investigate the secrecy caching capacity, namely, the maximum amount of information which can be stored in the caching network such that there is no leakage of information during a partial repair process. We then deduce the strong and weak secrecy caching capacities, and also derive the sufficient finite field sizes for achieving the capacities. Finally, we propose optimal secure codes for exact partial repair, in which the recovered packets are exactly the same as erased packets.Comment: To Appear in IEEE Conference on Communication and Network Security (CNS

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication
    • …
    corecore