73,322 research outputs found

    A cooperative cellular and broadcast conditional access system for Pay-TV systems

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The lack of interoperability between Pay-TV service providers and a horizontally integrated business transaction model have compromised the competition in the Pay-TV market. In addition, the lack of interactivity with customers has resulted in high churn rate and improper security measures have contributed into considerable business loss. These issues are the main cause of high operational costs and subscription fees in the Pay-TV systems. As a result, this paper presents the Mobile Conditional Access System (MICAS) as an end-to-end access control solution for Pay-TV systems. It incorporates the mobile and broadcasting systems and provides a platform whereby service providers can effectively interact with their customers, personalize their services and adopt appropriate security measurements. This would result in the decrease of operating expenses and increase of customers' satisfaction in the system. The paper provides an overview of state-of-the-art conditional access solutions followed by detailed description of design, reference model implementation and analysis of possible MICAS security architectures.Strategy & Technology (S&T) Lt

    An adaptive quasi harmonic broadcasting scheme with optimal bandwidth requirement

    Full text link
    The aim of Harmonic Broadcasting protocol is to reduce the bandwidth usage in video-on-demand service where a video is divided into some equal sized segments and every segment is repeatedly transmitted over a number of channels that follows harmonic series for channel bandwidth assignment. As the bandwidth of channels differs from each other and users can join at any time to these multicast channels, they may experience a synchronization problem between download and playback. To deal with this issue, some schemes have been proposed, however, at the cost of additional or wastage of bandwidth or sudden extreme bandwidth requirement. In this paper we present an adaptive quasi harmonic broadcasting scheme (AQHB) which delivers all data segment on time that is the download and playback synchronization problem is eliminated while keeping the bandwidth consumption as same as traditional harmonic broadcasting scheme without cost of any additional or wastage of bandwidth. It also ensures the video server not to increase the channel bandwidth suddenly that is, also eliminates the sudden buffer requirement at the client side. We present several analytical results to exhibit the efficiency of our proposed broadcasting scheme over the existing ones.Comment: IEEE International Conference on Informatics, Electronics & Vision (ICIEV), 2013, 6pages, 8 figure
    • …
    corecore