21 research outputs found

    Towards Semantic Interoperability Standards based on Ontologies

    Get PDF
    The paper is structured as follows: Section 2 introduces semantic interoperability and its benefits; Section 3 provides industry requirements for semantic interoperability practice; Section 4 describes various initiatives for ontology-driven interoperability; Section 5 explains the various life cycles for ontology-driven interoperability; and finally, Section 6 provides recommendations on ontology-based semantic interoperability.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No.732240 (SynchroniCity) and No. 688467 (VICINITY); from ETSI under Specialist Task Forces 534, 556, and 566. This work is partially funded by Hazards SEES NSF Award EAR 1520870, and KHealth NIH 1 R01 HD087132-01

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Towards Data Sharing across Decentralized and Federated IoT Data Analytics Platforms

    Get PDF
    In the past decade the Internet-of-Things concept has overwhelmingly entered all of the fields where data are produced and processed, thus, resulting in a plethora of IoT platforms, typically cloud-based, that centralize data and services management. In this scenario, the development of IoT services in domains such as smart cities, smart industry, e-health, automotive, are possible only for the owner of the IoT deployments or for ad-hoc business one-to-one collaboration agreements. The realization of "smarter" IoT services or even services that are not viable today envisions a complete data sharing with the usage of multiple data sources from multiple parties and the interconnection with other IoT services. In this context, this work studies several aspects of data sharing focusing on Internet-of-Things. We work towards the hyperconnection of IoT services to analyze data that goes beyond the boundaries of a single IoT system. This thesis presents a data analytics platform that: i) treats data analytics processes as services and decouples their management from the data analytics development; ii) decentralizes the data management and the execution of data analytics services between fog, edge and cloud; iii) federates peers of data analytics platforms managed by multiple parties allowing the design to scale into federation of federations; iv) encompasses intelligent handling of security and data usage control across the federation of decentralized platforms instances to reduce data and service management complexity. The proposed solution is experimentally evaluated in terms of performances and validated against use cases. Further, this work adopts and extends available standards and open sources, after an analysis of their capabilities, fostering an easier acceptance of the proposed framework. We also report efforts to initiate an IoT services ecosystem among 27 cities in Europe and Korea based on a novel methodology. We believe that this thesis open a viable path towards a hyperconnection of IoT data and services, minimizing the human effort to manage it, but leaving the full control of the data and service management to the users' will

    Autonomic Approach based on Semantics and Checkpointing for IoT System Management

    Get PDF
    Le résumé en français n'a pas été communiqué par l'auteur.Le résumé en anglais n'a pas été communiqué par l'auteur

    Bushfire disaster monitoring system using low power wide area networks (LPWAN)

    Full text link
    Some applications, including disaster monitoring and recovery networks, use low-powerwide-area networks (LPWAN). LPWAN sensors capture data bits and transmit them to public carriernetworks (e.g., cellular networks) via dedicated gateways. One of the challenges encountered indisaster management scenarios revolves around the carry/forward sensed data and geographicallocation information dissemination to the disaster relief operatives (disaster relief agency; DRA) toidentify, characterise, and prioritise the affected areas. There are network topology options to reachits destination, including cellular, circuit switched, and peer-to-peer networks. In the context ofnatural disaster prediction, it is vital to access geographical location data as well as the timestamp.This paper proposes the usage of Pseudo A Number (PAN), that is, the calling party address, which isused by every network to include the location information instead of the actual calling party addressof the gateway in LPWAN. This PAN information can be further analysed by the DRA to identify theaffected areas and predict the complications of the disaster impacts in addition to the past historyof damages. This paper aims to propose a solution that can predict disaster proceedings basedon propagation and the velocity of impact using vector calculation of the location data and thetimestamp, which are transmitted by sensors through the PAN of the gateway in LPWAN

    Application of an emergency alarm system for physiological sensors utilizing smart devices

    Full text link
    Since innovative smart devices and body sensors including wearables have become prevalent with health informatics such as in Mobile Health (mHealth), we proposed to infer sensed data in sensor nodes to reduce the battery power consumption and bandwidth usage in wireless body area networks. It is critical to raise an alarm when the user is in an urgent situation, which can be done by analysing the sensed data against the user’s activity status utilizing accelerometer sensors. However, when the activity changes frequently, there may be an increase in false alarms, which increases sensing and transferring of data, resulting in higher resource consumption. To reduce and mitigate the problem, we propose verifying the alarm and sending a user feedback using a smart device or smartwatch application so that a user can respond to whether the alarm is true or false. This paper presents a user-feedback system for use in activity recognition to mitigate and improve possible false alarm situations, which will consequently result in helping sensors to reduce the frequency of transactions and transmissions in wireless body area networks. As a contribution, the alarm determination can not only improve the accuracy of the alarm by utilising mobile app screen and speech recognition but can also reduce possible false alarms. It may also communicate with their physician in real-time who can assess the status with health data provided by the sensors
    corecore