930 research outputs found

    PresSafe: Barometer-based On-screen Pressure Assisted Implicit Authentication for Smartphones

    Get PDF

    Effective Identity Management on Mobile Devices Using Multi-Sensor Measurements

    Get PDF
    Due to the dramatic increase in popularity of mobile devices in the past decade, sensitive user information is stored and accessed on these devices every day. Securing sensitive data stored and accessed from mobile devices, makes user-identity management a problem of paramount importance. The tension between security and usability renders the task of user-identity verification on mobile devices challenging. Meanwhile, an appropriate identity management approach is missing since most existing technologies for user-identity verification are either one-shot user verification or only work in restricted controlled environments. To solve the aforementioned problems, we investigated and sought approaches from the sensor data generated by human-mobile interactions. The data are collected from the on-board sensors, including voice data from microphone, acceleration data from accelerometer, angular acceleration data from gyroscope, magnetic force data from magnetometer, and multi-touch gesture input data from touchscreen. We studied the feasibility of extracting biometric and behaviour features from the on-board sensor data and how to efficiently employ the features extracted to perform user-identity verification on the smartphone device. Based on the experimental results of the single-sensor modalities, we further investigated how to integrate them with hardware such as fingerprint and Trust Zone to practically fulfill a usable identity management system for both local application and remote services control. User studies and on-device testing sessions were held for privacy and usability evaluation.Computer Science, Department o

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    Extending the Touchscreen Pattern Lock Mechanism with Duplicated and Temporal Codes

    Get PDF
    We investigate improvements to authentication on mobile touchscreen phones and present a novel extension to the widely used touchscreen pattern lock mechanism. Our solution allows including nodes in the grid multiple times, which enhances the resilience to smudge and other forms of attack. For example, for a smudge pattern covering 7 nodes, our approach increases the amount of possible lock patterns by a factor of 15 times. Our concept was implemented and evaluated in a laboratory user test (n = 36). The test participants found the usability of the proposed concept to be equal to that of the baseline pattern lock mechanism but considered it more secure. Our solution is fully backwards-compatible with the current baseline pattern lock mechanism, hence enabling easy adoption whilst providing higher security at a comparable level of usability

    Continuous and transparent multimodal authentication: reviewing the state of the art

    Get PDF
    Individuals, businesses and governments undertake an ever-growing range of activities online and via various Internet-enabled digital devices. Unfortunately, these activities, services, information and devices are the targets of cybercrimes. Verifying the user legitimacy to use/access a digital device or service has become of the utmost importance. Authentication is the frontline countermeasure of ensuring only the authorized user is granted access; however, it has historically suffered from a range of issues related to the security and usability of the approaches. They are also still mostly functioning at the point of entry and those performing sort of re-authentication executing it in an intrusive manner. Thus, it is apparent that a more innovative, convenient and secure user authentication solution is vital. This paper reviews the authentication methods along with the current use of authentication technologies, aiming at developing a current state-of-the-art and identifying the open problems to be tackled and available solutions to be adopted. It also investigates whether these authentication technologies have the capability to fill the gap between high security and user satisfaction. This is followed by a literature review of the existing research on continuous and transparent multimodal authentication. It concludes that providing users with adequate protection and convenience requires innovative robust authentication mechanisms to be utilized in a universal level. Ultimately, a potential federated biometric authentication solution is presented; however it needs to be developed and extensively evaluated, thus operating in a transparent, continuous and user-friendly manner

    RepliCueAuth: Validating the Use of a lab-based Virtual Reality Setup for Evaluating Authentication System

    Get PDF
    Evaluating novel authentication systems is often costly and time-consuming. In this work, we assess the suitability of using Virtual Reality (VR) to evaluate the usability and security of real-world authentication systems. To this end, we conducted a replication study and built a virtual replica of CueAuth [52], a recently introduced authentication scheme, and report on results from: (1) a lab-based in-VR usability study (N=20) evaluating user performance; (2) an online security study (N=22) evaluating system’s observation resistance through virtual avatars; and (3) a comparison between our results and those previously reported in the real-world evaluation. Our analysis indicates that VR can serve as a suitable test-bed for human-centred evaluations of real-world authentication schemes, but the used VR technology can have an impact on the evaluation. Our work is a first step towards augmenting the design and evaluation spectrum of authentication systems and offers ground work for more research to follow

    Identification of User Behavioural Biometrics for Authentication using Keystroke Dynamics and Machine Learning

    Get PDF
    This thesis focuses on the effective classification of the behavior of users accessing computing devices to authenticate them. The authentication is based on keystroke dynamics, which captures the users behavioral biometric and applies machine learning concepts to classify them. The users type a strong passcode ”.tie5Roanl” to record their typing pattern. In order to confirm identity, anonymous data from 94 users were collected to carry out the research. Given the raw data, features were extracted from the attributes based on the button pressed and action timestamp events. The support vector machine classifier uses multi-class classification with one vs. one decision shape function to classify different users. To reduce the classification error, it is essential to identify the important features from the raw data. In an effort to confront the generation of features from attributes an efficient feature extraction algorithm has been developed, obtaining high classification performance are now being sought. To handle the multi-class problem, the random forest classifier is used to identify the users effectively. In addition, mRMR feature selection has been applied to increase the classification performance metrics and to confirm the identity of the users based on the way they access computing devices. From the results, we conclude that device information and touch pressure effectively contribute to identifying each user. Out of them, features that contain device information are responsible for increasing the performance metrics of the system by adding a token-based authentication layer. Based upon the results, random forest yields better classification results for this dataset. The research will contribute significantly to the field of cyber-security by forming a robust authentication system using machine learning algorithms

    Usability, Efficiency and Security of Personal Computing Technologies

    Get PDF
    New personal computing technologies such as smartphones and personal fitness trackers are widely integrated into user lifestyles. Users possess a wide range of skills, attributes and backgrounds. It is important to understand user technology practices to ensure that new designs are usable and productive. Conversely, it is important to leverage our understanding of user characteristics to optimize new technology efficiency and effectiveness. Our work initially focused on studying older users, and personal fitness tracker users. We applied the insights from these investigations to develop new techniques improving user security protections, computational efficiency, and also enhancing the user experience. We offer that by increasing the usability, efficiency and security of personal computing technology, users will enjoy greater privacy protections along with experiencing greater enjoyment of their personal computing devices. Our first project resulted in an improved authentication system for older users based on familiar facial images. Our investigation revealed that older users are often challenged by traditional text passwords, resulting in decreased technology use or less than optimal password practices. Our graphical password-based system relies on memorable images from the user\u27s personal past history. Our usability study demonstrated that this system was easy to use, enjoyable, and fast. We show that this technique is extendable to smartphones. Personal fitness trackers are very popular devices, often worn by users all day. Our personal fitness tracker investigation provides the first quantitative baseline of usage patterns with this device. By exploring public data, real-world user motivations, reliability concerns, activity levels, and fitness-related socialization patterns were discerned. This knowledge lends insight to active user practices. Personal user movement data is captured by sensors, then analyzed to provide benefits to the user. The dynamic time warping technique enables comparison of unequal data sequences, and sequences containing events at offset times. Existing techniques target short data sequences. Our Phase-aware Dynamic Time Warping algorithm focuses on a class of sinusoidal user movement patterns, resulting in improved efficiency over existing methods. Lastly, we address user data privacy concerns in an environment where user data is increasingly flowing to manufacturer remote cloud servers for analysis. Our secure computation technique protects the user\u27s privacy while data is in transit and while resident on cloud computing resources. Our technique also protects important data on cloud servers from exposure to individual users

    Security Enhancement of IoT and Fog Computing Via Blockchain Applications

    Get PDF
    Blockchain technology is now becoming highly appealing to the next generation because it is better tailored to the information age. Blockchain technologies can also be used in the Internet of Things (IoT) and fog computing. The development of IoT and Fog Computing technologies in different fields has resulted in a major improvement in distributed networks. Blockchain technology is now becoming highly appealing to the next generation because it is better tailored to the information age. Blockchain technologies can also be used in IoT and fog computing.  The blockchain principle necessitates a transparent data storage mechanism for storing and exchanging data and transactions throughout the network. In this paper, first, we explained Blockchain, its architecture, and its security. Then we view Blockchain application in IoT security. Then we explained Fog computing, Generic Security Requirements for Fog Computing, and we also discuss Blockchain applications that enhance Fog Computing Security. Finally, we conduct a review of some recent literature on using Blockchain applications to improve the security of IoT and fog computing and a comparison of the methods proposed in the literature
    corecore