2,908 research outputs found

    Scheduling Algorithms: Challenges Towards Smart Manufacturing

    Get PDF
    Collecting, processing, analyzing, and driving knowledge from large-scale real-time data is now realized with the emergence of Artificial Intelligence (AI) and Deep Learning (DL). The breakthrough of Industry 4.0 lays a foundation for intelligent manufacturing. However, implementation challenges of scheduling algorithms in the context of smart manufacturing are not yet comprehensively studied. The purpose of this study is to show the scheduling No.s that need to be considered in the smart manufacturing paradigm. To attain this objective, the literature review is conducted in five stages using publish or perish tools from different sources such as Scopus, Pubmed, Crossref, and Google Scholar. As a result, the first contribution of this study is a critical analysis of existing production scheduling algorithms\u27 characteristics and limitations from the viewpoint of smart manufacturing. The other contribution is to suggest the best strategies for selecting scheduling algorithms in a real-world scenario

    Energy Efficient Manufacturing Scheduling: A Systematic Literature Review

    Full text link
    The social context in relation to energy policies, energy supply, and sustainability concerns as well as advances in more energy-efficient technologies is driving a need for a change in the manufacturing sector. The main purpose of this work is to provide a research framework for energy-efficient scheduling (EES) which is a very active research area with more than 500 papers published in the last 10 years. The reason for this interest is mostly due to the economic and environmental impact of considering energy in production scheduling. In this paper, we present a systematic literature review of recent papers in this area, provide a classification of the problems studied, and present an overview of the main aspects and methodologies considered as well as open research challenges

    Solving Task Scheduling Problem in Cloud Computing Environment Using Orthogonal Taguchi-Cat Algorithm

    Get PDF
    In cloud computing datacenter, task execution delay is no longer accidental. In recent times, a number of artificial intelligence scheduling techniques are proposed and applied to reduce task execution delay. In this study, we proposed an algorithm called Orthogonal Taguchi Based-Cat Swarm Optimization (OTB-CSO) to minimize total task execution time. In our proposed algorithm Taguchi Orthogonal approach was incorporated at CSO tracing mode for best task mapping on VMs with minimum execution time. The proposed algorithm was implemented on CloudSim tool and evaluated based on makespan metric. Experimental results showed for 20VMs used, proposed OTB-CSO was able to minimize makespan of total tasks scheduled across VMs with 42.86%, 34.57% and 2.58% improvement over Minimum and Maximum Job First (Min-Max), Particle Swarm Optimization with Linear Descending Inertia Weight (PSO-LDIW) and Hybrid Particle Swarm Optimization with Simulated Annealing (HPSO-SA) algorithms. Results obtained showed OTB-CSO is effective to optimize task scheduling and improve overall cloud computing performance with better system utilization

    Internet of Things in urban waste collection

    Get PDF
    Nowadays, the waste collection management has an important role in urban areas. This paper faces this issue and proposes the application of a metaheuristic for the optimization of a weekly schedule and routing of the waste collection activities in an urban area. Differently to several contributions in literature, fixed periodic routes are not imposed. The results significantly improve the performance of the company involved, both in terms of resources used and costs saving

    A multiobjective evolutionary algorithm for achieving energy efficiency in production environments integrated with multiple automated guided vehicles

    Get PDF
    Increasing energy shortages and environmental pollution have made energy efficiency an urgent concern in manufacturing plants. Most studies looking into sustainable production in general and energy-efficient production scheduling in particular, however, have not paid much attention to logistical factors (e.g., transport and setup). This study integrates multiple automated guided vehicles (AGVs) into a job-shop environment. We propose a multiobjective scheduling model that considers machine processing, sequence-dependent setup and AGV transport, aiming to simultaneously minimize the makespan, total idle time of machines and total energy consumption of both machines and AGVs. To solve this problem, an effective multiobjective evolutionary algorithm (EMOEA) is developed. Within the EMOEA, an efficient encoding/decoding method is designed to represent and decode each solution. A new crossover operator is proposed for AGV assignment and AGV speed sequences. To balance the exploration and exploitation ability of the EMOEA, an opposition-based learning strategy is incorporated. A total of 75 benchmark instances and a real-world case are used for our experimental study. Taguchi analysis is applied to determine the best combination of key parameters for the EMOEA. Extensive computational experiments show that properly increasing the number of AGVs can shorten the waiting time of machines and achieve a balance between economic and environmental objectives for production systems. The experimental results confirm that the proposed EMOEA is significantly better at solving the problem than three other well-known algorithms. Our findings here have significant managerial implications for real-world manufacturing environments integrated with AGVs

    Modeling and Analysis of Scheduling Problems Containing Renewable Energy Decisions

    Get PDF
    With globally increasing energy demands, world citizens are facing one of society\u27s most critical issues: protecting the environment. To reduce the emission of greenhouse gases (GHG), which are by-products of conventional energy resources, people are reducing the consumption of oil, gas, and coal collectively. In the meanwhile, interest in renewable energy resources has grown in recent years. Renewable generators can be installed both on the power grid side and end-use customer side of power systems. Energy management in power systems with multiple microgrids containing renewable energy resources has been a focus of industry and researchers as of late. Further, on-site renewable energy provides great opportunities for manufacturing plants to reduce energy costs when faced with time-varying electricity prices. To efficiently utilize on-site renewable energy generation, production schedules and energy supply decisions need to be coordinated. As renewable energy resources like solar and wind energy typically fluctuate with weather variations, the inherent stochastic nature of renewable energy resources makes the decision making of utilizing renewable generation complex. In this dissertation, we study a power system with one main grid (arbiter) and multiple microgrids (agents). The microgrids (MGs) are equipped to control their local generation and demand in the presence of uncertain renewable generation and heterogeneous energy management settings. We propose an extension to the classical two-stage stochastic programming model to capture these interactions by modeling the arbiter\u27s problem as the first-stage master problem and the agent decision problems as second-stage subproblems. To tackle this problem formulation, we propose a sequential sampling-based optimization algorithm that does not require a priori knowledge of probability distribution functions or selection of samples for renewable generation. The subproblems capture the details of different energy management settings employed at the agent MGs to control heating, ventilation and air conditioning systems; home appliances; industrial production; plug-in electrical vehicles; and storage devices. Computational experiments conducted on the US western interconnect (WECC-240) data set illustrate that the proposed algorithm is scalable and our solutions are statistically verifiable. Our results also show that the proposed framework can be used as a systematic tool to gauge (a) the impact of energy management settings in efficiently utilizing renewable generation and (b) the role of flexible demands in reducing system costs. Next, we present a two-stage, multi-objective stochastic program for flow shops with sequence-dependent setups in order to meet production schedules while managing energy costs. The first stage provides optimal schedules to minimize the total completion time, while the second stage makes energy supply decisions to minimize energy costs under a time-of-use electricity pricing scheme. Power demand for production is met by on-site renewable generation, supply from the main grid, and an energy storage system. An ε-constraint algorithm integrated with an L-shaped method is proposed to analyze the problem. Sets of Pareto optimal solutions are provided for decision-makers and our results show that the energy cost of setup operations is relatively high such that it cannot be ignored. Further, using solar or wind energy can save significant energy costs with solar energy being the more viable option of the two for reducing costs. Finally, we extend the flow shop scheduling problem to a job shop environment under hour-ahead real-time electricity pricing schemes. The objectives of interest are to minimize total weighted completion time and energy costs simultaneously. Besides renewable generation, hour-ahead real-time electricity pricing is another source of uncertainty in this study as electricity prices are released to customers only hours in advance of consumption. A mathematical model is presented and an ε-constraint algorithm is used to tackle the bi-objective problem. Further, to improve computational efficiency and generate solutions in a practically acceptable amount of time, a hybrid multi-objective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is developed. Five methods are developed to calculate chromosome fitness values. Computational tests show that both mathematical modeling and our proposed algorithm are comparable, while our algorithm produces solutions much quicker. Using a single method (rather than five) to generate schedules can further reduce computational time without significantly degrading solution quality

    Energy-Aware Multi-Objective Job Shop Scheduling Optimization with Metaheuristics in Manufacturing Industries: A Critical Survey, Results, and Perspectives

    Get PDF
    In recent years, the application of artificial intelligence has been revolutionizing the manufacturing industry, becoming one of the key pillars of what has been called Industry 4.0. In this context, we focus on the job shop scheduling problem (JSP), which aims at productions orders to be carried out, but considering the reduction of energy consumption as a key objective to fulfill. Finding the best combination of machines and jobs to be performed is not a trivial problem and becomes even more involved when several objectives are taken into account. Among them, the improvement of energy savings may conflict with other objectives, such as the minimization of the makespan. In this paper, we provide an in-depth review of the existing literature on multi-objective job shop scheduling optimization with metaheuristics, in which one of the objectives is the minimization of energy consumption. We systematically reviewed and critically analyzed the most relevant features of both problem formulations and algorithms to solve them effectively. The manuscript also informs with empirical results the main findings of our bibliographic critique with a performance comparison among representative multi-objective evolutionary solvers applied to a diversity of synthetic test instances. The ultimate goal of this article is to carry out a critical analysis, finding good practices and opportunities for further improvement that stem from current knowledge in this vibrant research area.Javier Del Ser acknowledges funding support from the Basque Government (consolidated research group MATHMODE, Ref. IT1294-19). Antonio J. Nebro is supported by the Spanish Ministry of Science and Innovation via Grant PID2020-112540RB-C41 (AEI/FEDER, UE) and the Andalusian PAIDI program with Grant P18-RT-2799
    corecore