87,373 research outputs found

    Security and privacy issues of physical objects in the IoT: Challenges and opportunities

    Get PDF
    In the Internet of Things (IoT), security and privacy issues of physical objects are crucial to the related applications. In order to clarify the complicated security and privacy issues, the life cycle of a physical object is divided into three stages of pre-working, in-working, and post-working. On this basis, a physical object-based security architecture for the IoT is put forward. According to the security architecture, security and privacy requirements and related protecting technologies for physical objects in different working stages are analyzed in detail. Considering the development of IoT technologies, potential security and privacy challenges that IoT objects may face in the pervasive computing environment are summarized. At the same time, possible directions for dealing with these challenges are also pointed out

    Understanding computer security

    Get PDF
    Few things in society and everyday life have changed in the last 10 years as much as the concept of security. From bank robberies to wars, what used to imply a great deal of violence is now silently happening on the Internet. Perhaps more strikingly, the very idea of privacy – a concept closely related to that of individual freedom – is undergoing such a profound revolution that people are suddenly unable to make rational and informed decisions: we protested for the introduction of RFID tags (Kelly and Erickson, 2005; Lee and Kim, 2006) and now we throw away en-masse most of our private information by subscribing to services (social media, free apps, cloud services), which have their reason of existence in the commerce of intimate personal data. The ICT revolution has changed the game, and the security paradigms that were suitable for people and systems just up to 10 years ago are now obsolete. It looks like we do not know what to replace them with. As of today, we keep patching systems but we do not understand how to make them reasonably secure (Rice, 2007); perhaps more importantly, we do not understand what reasonable privacy guarantees are for human beings, let alone how to enforce them. We do not understand how to combine accountability and freedom in this new world, in which firewalls and digital perimeters cannot guarantee security and privacy any longer. We believe that the root of the challenge that we face is understanding security and how information technology can enable and support such an understanding. And just like security is a broad, multidisciplinary topic covering technical as well as non-technical issues, the challenge of understanding security is a multifaceted one, spanning across a myriad of noteworthy topics. Here, we mention just three that we consider particularly important

    Digital forensics challenges and readiness for 6G Internet of Things (IoT) networks

    Get PDF
    The development of sixth-generation (6G) wireless communication technology is expected to provide super high-speed data transmission, and advanced network performance than the current fifth-generation (5G) and be fully functional by the 2030s. This development will have a significant impact and add improvements to digital extended reality (XR), autonomous systems, vehicular ad hoc networks (VANETs), artificial intelligence (AI), underwater communications, blockchain technology, pervasive biomedical informatics and smart cities built on the digital infrastructure backbone of the Internet of Things (IoT). The ubiquitous nature of this large-scale 6G-enabled IoT that offers faster connectivity capabilities and integrates both terrestrial and non-terrestrial networks will not only create new data security and privacy issues but also provide a treasure trove of digital evidence useful for digital forensic examiners investigating security incidents and cybercrime. However, for digital forensic examiners, evidence collection, preservation and analysis will become a priority in the successful deployment of 6G IoT networks. In this study, we define key applications of 6G network technology to the Internet of Things and its existing architectures. The survey introduces potential digital forensic challenges and related issues affecting digital forensic investigations specific to 6G IoT networks. Finally, we highlight and discuss forensic readiness and future research directions for identified challenges within the 6G IoT network environments
    • …
    corecore