651 research outputs found

    Revisiting the Feasibility of Public Key Cryptography in Light of IIoT Communications

    Get PDF
    Digital certificates are regarded as the most secure and scalable way of implementing authentication services in the Internet today. They are used by most popular security protocols, including Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS). The lifecycle management of digital certificates relies on centralized Certification Authority (CA)-based Public Key Infrastructures (PKIs). However, the implementation of PKIs and certificate lifecycle management procedures in Industrial Internet of Things (IIoT) environments presents some challenges, mainly due to the high resource consumption that they imply and the lack of trust in the centralized CAs. This paper identifies and describes the main challenges to implement certificate-based public key cryptography in IIoT environments and it surveys the alternative approaches proposed so far in the literature to address these challenges. Most proposals rely on the introduction of a Trusted Third Party to aid the IIoT devices in tasks that exceed their capacity. The proposed alternatives are complementary and their application depends on the specific challenge to solve, the application scenario, and the capacities of the involved IIoT devices. This paper revisits all these alternatives in light of industrial communication models, identifying their strengths and weaknesses, and providing an in-depth comparative analysis.This work was financially supported by the European commission through ECSEL-JU 2018 program under the COMP4DRONES project (grant agreement N∘ 826610), with national financing from France, Spain, Italy, Netherlands, Austria, Czech, Belgium and Latvia. It was also partially supported by the Ayudas Cervera para Centros Tecnológicos grant of the Spanish Centre for the Development of Industrial Technology (CDTI) under the project EGIDA (CER-20191012), and in part by the Department of Economic Development and Competitiveness of the Basque Government through the project TRUSTIND—Creating Trust in the Industrial Digital Transformation (KK-2020/00054)

    A Decade of Research in Fog computing: Relevance, Challenges, and Future Directions

    Full text link
    Recent developments in the Internet of Things (IoT) and real-time applications, have led to the unprecedented growth in the connected devices and their generated data. Traditionally, this sensor data is transferred and processed at the cloud, and the control signals are sent back to the relevant actuators, as part of the IoT applications. This cloud-centric IoT model, resulted in increased latencies and network load, and compromised privacy. To address these problems, Fog Computing was coined by Cisco in 2012, a decade ago, which utilizes proximal computational resources for processing the sensor data. Ever since its proposal, fog computing has attracted significant attention and the research fraternity focused at addressing different challenges such as fog frameworks, simulators, resource management, placement strategies, quality of service aspects, fog economics etc. However, after a decade of research, we still do not see large-scale deployments of public/private fog networks, which can be utilized in realizing interesting IoT applications. In the literature, we only see pilot case studies and small-scale testbeds, and utilization of simulators for demonstrating scale of the specified models addressing the respective technical challenges. There are several reasons for this, and most importantly, fog computing did not present a clear business case for the companies and participating individuals yet. This paper summarizes the technical, non-functional and economic challenges, which have been posing hurdles in adopting fog computing, by consolidating them across different clusters. The paper also summarizes the relevant academic and industrial contributions in addressing these challenges and provides future research directions in realizing real-time fog computing applications, also considering the emerging trends such as federated learning and quantum computing.Comment: Accepted for publication at Wiley Software: Practice and Experience journa

    A Component-Based Approach for Securing Indoor Home Care Applications

    Get PDF
    eHealth systems have adopted recent advances on sensing technologies together with advances in information and communication technologies (ICT) in order to provide people-centered services that improve the quality of life of an increasingly elderly population. As these eHealth services are founded on the acquisition and processing of sensitive data (e.g., personal details, diagnosis, treatments and medical history), any security threat would damage the public's confidence in them. This paper proposes a solution for the design and runtime management of indoor eHealth applications with security requirements. The proposal allows applications definition customized to patient particularities, including the early detection of health deterioration and suitable reaction (events) as well as security needs. At runtime, security support is twofold. A secured component-based platform supervises applications execution and provides events management, whilst the security of the communications among application components is also guaranteed. Additionally, the proposed event management scheme adopts the fog computing paradigm to enable local event related data storage and processing, thus saving communication bandwidth when communicating with the cloud. As a proof of concept, this proposal has been validated through the monitoring of the health status in diabetic patients at a nursing home.This work was financed under project DPI2015-68602-R (MINECO/FEDER, UE), UPV/EHU under project PPG17/56 and GV/EJ under recognized research group IT914-16
    • …
    corecore