1,048 research outputs found

    Security and Cost-Aware Computation Offloading via Deep Reinforcement Learning in Mobile Edge Computing

    Full text link
    © 2019 Binbin Huang et al. With the explosive growth of mobile applications, mobile devices need to be equipped with abundant resources to process massive and complex mobile applications. However, mobile devices are usually resource-constrained due to their physical size. Fortunately, mobile edge computing, which enables mobile devices to offload computation tasks to edge servers with abundant computing resources, can significantly meet the ever-increasing computation demands from mobile applications. Nevertheless, offloading tasks to the edge servers are liable to suffer from external security threats (e.g., snooping and alteration). Aiming at this problem, we propose a security and cost-aware computation offloading (SCACO) strategy for mobile users in mobile edge computing environment, the goal of which is to minimize the overall cost (including mobile device's energy consumption, processing delay, and task loss probability) under the risk probability constraints. Specifically, we first formulate the computation offloading problem as a Markov decision process (MDP). Then, based on the popular deep reinforcement learning approach, deep Q-network (DQN), the optimal offloading policy for the proposed problem is derived. Finally, extensive experimental results demonstrate that SCACO can achieve the security and cost efficiency for the mobile user in the mobile edge computing environment

    A comprehensive survey on reinforcement-learning-based computation offloading techniques in Edge Computing Systems

    Get PDF
    Producción CientíficaIn recent years, the number of embedded computing devices connected to the Internet has exponentially increased. At the same time, new applications are becoming more complex and computationally demanding, which can be a problem for devices, especially when they are battery powered. In this context, the concepts of computation offloading and edge computing, which allow applications to be fully or partially offloaded and executed on servers close to the devices in the network, have arisen and received increasing attention. Then, the design of algorithms to make the decision of which applications or tasks should be offloaded, and where to execute them, is crucial. One of the options that has been gaining momentum lately is the use of Reinforcement Learning (RL) and, in particular, Deep Reinforcement Learning (DRL), which enables learning optimal or near-optimal offloading policies adapted to each particular scenario. Although the use of RL techniques to solve the computation offloading problem in edge systems has been covered by some surveys, it has been done in a limited way. For example, some surveys have analysed the use of RL to solve various networking problems, with computation offloading being one of them, but not the primary focus. Other surveys, on the other hand, have reviewed techniques to solve the computation offloading problem, being RL just one of the approaches considered. To the best of our knowledge, this is the first survey that specifically focuses on the use of RL and DRL techniques for computation offloading in edge computing system. We present a comprehensive and detailed survey, where we analyse and classify the research papers in terms of use cases, network and edge computing architectures, objectives, RL algorithms, decision-making approaches, and time-varying characteristics considered in the analysed scenarios. In particular, we include a series of tables to help researchers identify relevant papers based on specific features, and analyse which scenarios and techniques are most frequently considered in the literature. Finally, this survey identifies a number of research challenges, future directions and areas for further study.Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42, PID2021-124463OBI00 y RED2018-102585-T, financiados por MCIN/AEI/10.13039/501100011033

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network
    corecore