783 research outputs found

    Secure and privacy-aware proxy mobile IPv6 protocol for vehicle-to-grid networks

    Get PDF
    Vehicle-to-Grid (V2G) networks have emerged as a new communication paradigm between Electric Vehicles (EVs) and the Smart Grid (SG). In order to ensure seamless communications between mobile EVs and the electric vehicle supply equipment, the support of ubiquitous and transparent mobile IP communications is essential in V2G networks. However, enabling mobile IP communications raises real concerns about the possibility of tracking the locations of connected EVs through their mobile IP addresses. In this paper, we employ certificate-less public key cryptography in synergy with the restrictive partially blind signature technique to construct a secure and privacy-aware proxy mobile IPv6 (SP-PMIPv6) protocol for V2G networks. SP-PMIPv6 achieves low authentication latency while protecting the identity and location privacy of the mobile EV. We evaluate the SP-PMIPv6 protocol in terms of its authentication overhead and the information-theoretic uncertainty derived by the mutual information metric to show the high level of achieved anonymity

    Efficient Security Protocols for Fast Handovers in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) are gaining popularity as a flexible and inexpensive replacement for Ethernet-based infrastructures. As the use of mobile devices such as smart phones and tablets is becoming ubiquitous, mobile clients should be guaranteed uninterrupted connectivity and services as they move from one access point to another within a WMN or between networks. To that end, we propose a novel security framework that consists of a new architecture, trust models, and protocols to offer mobile clients seamless and fast handovers in WMNs. The framework provides a dynamic, flexible, resource-efficient, and secure platform for intra-network and inter-network handovers in order to support real-time mobile applications in WMNs. In particular, we propose solutions to the following problems: authentication, key management, and group key management. We propose (1) a suite of certificate-based authentication protocols that minimize the authentication delay during handovers from one access point to another within a network (intra-network authentication). (2) a suite of key distribution and authentication protocols that minimize the authentication delay during handovers from one network to another (inter-network authentication). (3) a new implementation of group key management at the data link layer in order to reduce the group key update latency from linear time (as currently done in IEEE 802.11 standards) to logarithmic time. This contributes towards minimizing the latency of the handover process for mobile members in a multicast or broadcast group

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Network layer access control for context-aware IPv6 applications

    Get PDF
    As part of the Lancaster GUIDE II project, we have developed a novel wireless access point protocol designed to support the development of next generation mobile context-aware applications in our local environs. Once deployed, this architecture will allow ordinary citizens secure, accountable and convenient access to a set of tailored applications including location, multimedia and context based services, and the public Internet. Our architecture utilises packet marking and network level packet filtering techniques within a modified Mobile IPv6 protocol stack to perform access control over a range of wireless network technologies. In this paper, we describe the rationale for, and components of, our architecture and contrast our approach with other state-of-the- art systems. The paper also contains details of our current implementation work, including preliminary performance measurements

    Enhanced Quality of Experience Based on Enriched Network Centric and Access Control Mechanisms

    Get PDF
    In the digital world service provisioning in user satisfying quality has become the goal of any content or network provider. Besides having satisfied and therefore, loyal users, the creation of sustainable revenue streams is the most important issue for network operators [1], [2], [3]. The motivation of this work is to enhance the quality of experience of users when they connect to the Internet, request application services as well as to maintain full service when these users are on the move in WLAN based access networks. In this context, the aspect of additional revenue creation for network operators is considered as well. The enhancements presented in this work are based on enriched network centric and access control mechanisms which will be achieved in three different areas of networks capabilities, namely the network performance, the network access and the network features themselves. In the area of network performance a novel authentication and authorisation method is introduced which overcomes the drawback of long authentication time in the handover procedure as required by the generic IEEE 802.1X process using the EAP-TLS method. The novel sequential authentication solution reduces the communication interruption time in a WLAN handover process of currently several hundred milliseconds to some milliseconds by combining the WPA2 PSK and the WPA2 EAP-TLS. In the area of usability a new user-friendly hotspot registration and login mechanisms is presented which significantly simplifies how users obtain WLAN hotspot login credentials and logon to a hotspot. This novel barcode initiated hotspot auto-login solution obtains user credentials through a simple SMS and performs an auto-login process that avoids the need to enter user name and password on the login page manually. In the area of network features a new system is proposed which overcomes the drawback that users are not aware of the quality in which a service can be provided prior to starting the service. This novel graceful denial of service solution informs the user about the expected application service quality before the application service is started

    SecMon: End-to-End Quality and Security Monitoring System

    Get PDF
    The Voice over Internet Protocol (VoIP) is becoming a more available and popular way of communicating for Internet users. This also applies to Peer-to-Peer (P2P) systems and merging these two have already proven to be successful (e.g. Skype). Even the existing standards of VoIP provide an assurance of security and Quality of Service (QoS), however, these features are usually optional and supported by limited number of implementations. As a result, the lack of mandatory and widely applicable QoS and security guaranties makes the contemporary VoIP systems vulnerable to attacks and network disturbances. In this paper we are facing these issues and propose the SecMon system, which simultaneously provides a lightweight security mechanism and improves quality parameters of the call. SecMon is intended specially for VoIP service over P2P networks and its main advantage is that it provides authentication, data integrity services, adaptive QoS and (D)DoS attack detection. Moreover, the SecMon approach represents a low-bandwidth consumption solution that is transparent to the users and possesses a self-organizing capability. The above-mentioned features are accomplished mainly by utilizing two information hiding techniques: digital audio watermarking and network steganography. These techniques are used to create covert channels that serve as transport channels for lightweight QoS measurement's results. Furthermore, these metrics are aggregated in a reputation system that enables best route path selection in the P2P network. The reputation system helps also to mitigate (D)DoS attacks, maximize performance and increase transmission efficiency in the network.Comment: Paper was presented at 7th international conference IBIZA 2008: On Computer Science - Research And Applications, Poland, Kazimierz Dolny 31.01-2.02 2008; 14 pages, 5 figure

    An integrated approach to QoS and security in future mobile networks using the Y-Comm framework

    Get PDF
    Future networks will comprise a wide variety of wireless networks. Users will expect to be always connected from anywhere and at any time as connections will be switched to available networks using vertical handover techniques. However, different networks have different Qualities-of-Service (QoS) so a QoS framework is needed to help applications and services deal with this new environment. In addition, since these networks must work together, future mobile systems will have an open, instead of the currently closed, architecture. Therefore new mechanisms will be needed to protect users, servers and network infrastructure. This means that future mobile networks will have to integrate communications, mobility, quality-of-service and security. However, in order to achieve this integration without affecting the flexibility of future networks, there is a need for novel methods that address QoS and security in a targeted manner within specific situations. Also, there is a need for a communication framework wherein these methods along with the communication and handover mechanisms could be integrated together. Therefore, this research uses the Y-Comm framework, which is a communication architecture to support vertical handover in Next Generations Networks, as an example of future communication frameworks that integrate QoS, security, communication and mobility mechanisms. Within the context of Y-Comm, research has been conducted to address QoS and security in heterogeneous networks. To preserve the flexibility of future network, the research in this thesis proposes the concept of Targeted Models to address security and QoS in specific scenarios: to address the QoS issue, a new QoS framework is introduced in this thesis, which will define targeted QoS models that will provide QoS in different situations such as connection initiation and in the case of handover. Similarly, to deal with the security side, targeted security models are proposed to address security in situations like connection initiation and handover. To define the targeted models and map them to actual network entities, research has been conducted to define a potential structure for future networks along with the main operational entities. The cooperation among these entities will define the targeted models. Furthermore, in order to specify the security protocols used by the targeted security models, an Authentication and Key Agreement framework is introduced to address security at different levels such as network and service levels. The underlying protocols of the Authentication and Key Agreement protocol are verified using Casper/FDR, which is a well-known, formal methods- based tool. The research also investigates potential methods to implement the proposed security protocols. To enable the implementation of some of the targeted security models, the research also proposes major enhancements to the current addressing, naming and location systems

    Untraceable Authentication Protocol for IEEE802.11s Standard

    Get PDF
    In the current paper, a new handover authentication protocol for IEEE802.11s Wireless mesh networks is presented. The new protocol divides the network into a number of cells, each cell contains a number of access points and based on the concept of ticket authentication, the mesh user takes a new ticket when enters the region of a new cell which decreases the handover latency. Moreover, in the current paper, a new idea for ticket generation is proposed, called Chain Ticket Derivation Function (CTDF), which uses the concept of a chain. Using CTDF in our proposed protocol raises the level of privacy for the users. The security analysis presented in the paper showed more strengths in our proposed scheme. Two formal verification tools, AVISPA and BAN logic are used to test the proposed protocol

    Mobility management across converged IP-based heterogeneous access networks

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 8/2/2010.In order to satisfy customer demand for a high performance “global” mobility service, network operators (ISPs, carriers, mobile operators, etc.) are facing the need to evolve to a converged “all-IP” centric heterogeneous access infrastructure. However, the integration of such heterogeneous access networks (e.g. 802.11, 802.16e, UMTS etc) brings major mobility issues. This thesis tackles issues plaguing existing mobility management solutions in converged IP-based heterogeneous networks. In order to do so, the thesis firstly proposes a cross-layer mechanism using the upcoming IEEE802.21 MIH services to make intelligent and optimized handovers. In this respect, FMIPv6 is integrated with the IEEE802.21 mechanism to provide seamless mobility during the overall handover process. The proposed solution is then applied in a simulated vehicular environment to optimize the NEMO handover process. It is shown through analysis and simulations of the signalling process that the overall expected handover (both L2 and L3) latency in FMIPv6 can be reduced by the proposed mechanism by 69%. Secondly, it is expected that the operator of a Next Generation Network will provide mobility as a service that will generate significant revenues. As a result, dynamic service bootstrapping and authorization mechanisms must be in place to efficiently deploy a mobility service (without static provisioning), which will allow only legitimate users to access the service. A GNU Linux based test-bed has been implemented to demonstrate this. The experiments presented show the handover performance of the secured FMIPv6 over the implemented test-bed compared to plain FMIPv6 and MIPv6 by providing quantitative measurements and results on the quality of experience perceived by the users of IPv6 multimedia applications. The results show the inclusion of the additional signalling of the proposed architecture for the purpose of authorization and bootstrapping (i.e. key distribution using HOKEY) has no adverse effect on the overall handover process. Also, using a formal security analysis tool, it is shown that the proposed mechanism is safe/secure from the induced security threats. Lastly, a novel IEEE802.21 assisted EAP based re-authentication scheme over a service authorization and bootstrapping framework is presented. AAA based authentication mechanisms like EAP incur signalling overheads due to large RTTs. As a result, overall handover latency also increases. Therefore, a fast re-authentication scheme is presented which utilizes IEEE802.21 MIH services to minimize the EAP authentication process delays and as a result reduce the overall handover latency. Analysis of the signalling process based on analytical results shows that the overall handover latency for mobility protocols will be approximately reduced by 70% by the proposed scheme
    corecore