17,197 research outputs found

    Creation and detection of hardware trojans using non-invasive off-the-shelf technologies

    Get PDF
    As a result of the globalisation of the semiconductor design and fabrication processes, integrated circuits are becoming increasingly vulnerable to malicious attacks. The most concerning threats are hardware trojans. A hardware trojan is a malicious inclusion or alteration to the existing design of an integrated circuit, with the possible effects ranging from leakage of sensitive information to the complete destruction of the integrated circuit itself. While the majority of existing detection schemes focus on test-time, they all require expensive methodologies to detect hardware trojans. Off-the-shelf approaches have often been overlooked due to limited hardware resources and detection accuracy. With the advances in technologies and the democratisation of open-source hardware, however, these tools enable the detection of hardware trojans at reduced costs during or after production. In this manuscript, a hardware trojan is created and emulated on a consumer FPGA board. The experiments to detect the trojan in a dormant and active state are made using off-the-shelf technologies taking advantage of different techniques such as Power Analysis Reports, Side Channel Analysis and Thermal Measurements. Furthermore, multiple attempts to detect the trojan are demonstrated and benchmarked. Our simulations result in a state-of-the-art methodology to accurately detect the trojan in both dormant and active states using off-the-shelf hardware

    Defending Against Firmware Cyber Attacks on Safety-Critical Systems

    Get PDF
    In the past, it was not possible to update the underlying software in many industrial control devices. Engineering teams had to ‘rip and replace’ obsolete components. However, the ability to make firmware updates has provided significant benefits to the companies who use Programmable Logic Controllers (PLCs), switches, gateways and bridges as well as an array of smart sensor/actuators. These updates include security patches when vulnerabilities are identified in existing devices; they can be distributed by physical media but are increasingly downloaded over Internet connections. These mechanisms pose a growing threat to the cyber security of safety-critical applications, which are illustrated by recent attacks on safety-related infrastructures across the Ukraine. Subsequent sections explain how malware can be distributed within firmware updates. Even when attackers cannot reverse engineer the code necessary to disguise their attack, they can undermine a device by forcing it into a constant upload cycle where the firmware installation never terminates. In this paper, we present means of mitigating the risks of firmware attack on safety-critical systems as part of wider initiatives to secure national critical infrastructures. Technical solutions, including firmware hashing, must be augmented by organizational measures to secure the supply chain within individual plants, across companies and throughout safety-related industries

    Fair Labor Association 2007 Annual Report

    Get PDF
    Assesses the progress made by companies in the move towards sustainable corporate responsibility in their labor standards. Breaks up data by company

    Industry 4.0: Horizontal Integration and Intellectual Property Law Strategies In England

    Get PDF

    Chip and Skim: cloning EMV cards with the pre-play attack

    Full text link
    EMV, also known as "Chip and PIN", is the leading system for card payments worldwide. It is used throughout Europe and much of Asia, and is starting to be introduced in North America too. Payment cards contain a chip so they can execute an authentication protocol. This protocol requires point-of-sale (POS) terminals or ATMs to generate a nonce, called the unpredictable number, for each transaction to ensure it is fresh. We have discovered that some EMV implementers have merely used counters, timestamps or home-grown algorithms to supply this number. This exposes them to a "pre-play" attack which is indistinguishable from card cloning from the standpoint of the logs available to the card-issuing bank, and can be carried out even if it is impossible to clone a card physically (in the sense of extracting the key material and loading it into another card). Card cloning is the very type of fraud that EMV was supposed to prevent. We describe how we detected the vulnerability, a survey methodology we developed to chart the scope of the weakness, evidence from ATM and terminal experiments in the field, and our implementation of proof-of-concept attacks. We found flaws in widely-used ATMs from the largest manufacturers. We can now explain at least some of the increasing number of frauds in which victims are refused refunds by banks which claim that EMV cards cannot be cloned and that a customer involved in a dispute must therefore be mistaken or complicit. Pre-play attacks may also be carried out by malware in an ATM or POS terminal, or by a man-in-the-middle between the terminal and the acquirer. We explore the design and implementation mistakes that enabled the flaw to evade detection until now: shortcomings of the EMV specification, of the EMV kernel certification process, of implementation testing, formal analysis, or monitoring customer complaints. Finally we discuss countermeasures
    • …
    corecore