3,252 research outputs found

    Machine learning and blockchain technologies for cybersecurity in connected vehicles

    Get PDF
    Future connected and autonomous vehicles (CAVs) must be secured againstcyberattacks for their everyday functions on the road so that safety of passengersand vehicles can be ensured. This article presents a holistic review of cybersecurityattacks on sensors and threats regardingmulti-modal sensor fusion. A compre-hensive review of cyberattacks on intra-vehicle and inter-vehicle communicationsis presented afterward. Besides the analysis of conventional cybersecurity threatsand countermeasures for CAV systems,a detailed review of modern machinelearning, federated learning, and blockchain approach is also conducted to safe-guard CAVs. Machine learning and data mining-aided intrusion detection systemsand other countermeasures dealing with these challenges are elaborated at theend of the related section. In the last section, research challenges and future direc-tions are identified

    Hardware Security of the Controller Area Network (CAN Bus)

    Get PDF
    The CAN bus is a multi-master network messaging protocol that is a standard across the vehicular industry to provide intra-vehicular communications. Electronics Control Units within vehicles use this network to exchange critical information to operate the car. With the advent of the internet nearly three decades ago, and an increasingly inter-connected world, it is vital that the security of the CAN bus be addressed and built up to withstand physical and non-physical intrusions with malicious intent. Specifically, this paper looks at the concept of node identifiers and how they allow the strengths of the CAN bus to shine while also increasing the level of security provided at the data-link level

    Autonomous Vehicles:The Cybersecurity Vulnerabilities and Countermeasures for Big Data Communication

    Get PDF
    The possible applications of communication based on big data have steadily increased in several industries, such as the autonomous vehicle industry, with a corresponding increase in security challenges, including cybersecurity vulnerabilities (CVs). The cybersecurity-related symmetry of big data communication systems used in autonomous vehicles may raise more vulnerabilities in the data communication process between these vehicles and IoT devices. The data involved in the CVs may be encrypted using an asymmetric and symmetric algorithm. Autonomous vehicles with proactive cybersecurity solutions, power-based cyberattacks, and dynamic countermeasures are the modern issues/developments with emerging technology and evolving attacks. Research on big data has been primarily focused on mitigating CVs and minimizing big data breaches using appropriate countermeasures known as security solutions. In the future, CVs in data communication between autonomous vehicles (DCAV), the weaknesses of autonomous vehicular networks (AVN), and cyber threats to network functions form the primary security issues in big data communication, AVN, and DCAV. Therefore, efficient countermeasure models and security algorithms are required to minimize CVs and data breaches. As a technique, policies and rules of CVs with proxy and demilitarized zone (DMZ) servers were combined to enhance the efficiency of the countermeasure. In this study, we propose an information security approach that depends on the increasing energy levels of attacks and CVs by identifying the energy levels of each attack. To show the results of the performance of our proposed countermeasure, CV and energy consumption are compared with different attacks. Thus, the countermeasures can secure big data communication and DCAV using security algorithms related to cybersecurity and effectively prevent CVs and big data breaches during data communication

    An Overview of Automotive Service-Oriented Architectures and Implications for Security Countermeasures

    Get PDF
    New requirements from the customers\u27 and manufacturers\u27 point of view such as adding new software functions during the product life cycle require a transformed architecture design for future vehicles. The paradigm of signal-oriented communication established for many years will increasingly be replaced by service-oriented approaches in order to increase the update and upgrade capability. In this article, we provide an overview of current protocols and communication patterns for automotive architectures based on the service-oriented architecture (SOA) paradigm and compare them with signal-oriented approaches. Resulting challenges and opportunities of SOAs with respect to information security are outlined and discussed. For this purpose, we explain different security countermeasures and present a state of the section of automotive approaches in the fields of firewalls, Intrusion Detection Systems (IDSs) and Identity and Access Management (IAM). Our final discussion is based on an exemplary hybrid architecture (signal- and service-oriented) and examines the adaptation of existing security measures as well as their specific security features

    Cyber-Physical Security Risk Assessment for Train Control and Monitoring Systems

    Get PDF
    SSV 2018, 1st International Workshop on System Security and Vulnerability, IEEE CNS Conference on Communications and Network Security, Pekin, CHINE, 30-/05/2018 - 01/06/2018Future railway systems should bring convenience to people's lives. In fact, due to the move away from bespoke stand- alone systems to open-platform, standardized equipments and increasing use of networked control and automation systems and connected technologies, the efficiency and the safety of railway services are improving. However, this dependence of automation, control and communication technologies makes railway systems becoming increasingly vulnerable to cyber-attacks and security threats which affects the overall performance. This paper deals with cybersecurity concerns facing these systems. As such, we analyse characteristics of railway threat landscape. Then, we discuss the direct impacts of the identified potential threats and their consequences on the whole system and we evaluate resulted risks. For space limitation, we choose to present the impact, likelihood and risk analysis for one functionality of the system, namely External Door control (EDC). Some good practices and related techniques for the development of safer, more comfortable, and more secure future railway systems are also discussed

    An Extended Survey on Vehicle Security

    Full text link
    The advanced electronic units with wireless capabilities inside modern vehicles have, enhanced the driving experience, but also introduced a myriad of security problems due to the inherent limitations of the internal communication protocol. In the last two decades, a number of security threats have been identified and accordingly, security measures have been proposed. In this paper, we provide a comprehensive review of security threats and countermeasures for the ubiquitous CAN bus communication protocol. Our review of the existing literature leads us to a observation of an overlooked simple, cost-effective, and incrementally deployable solution. Essentially, a reverse firewall, referred to in this paper as an icewall, can be an effective defense against a major class of packet-injection attacks and many denial of service attacks. We cover the fundamentals of the icewall in this paper. Further, by introducing the notion of human-in-the-loop, we discuss the subtle implications to its security when a human driver is accounted for
    • …
    corecore