72,151 research outputs found

    A Survey on Cyber Security for Smart Grid Networks

    Get PDF
    Smart grid is a electrical grid in which power generation units, transmission units, distribution units and electricity consumers are connected using advanced communication and information technologies. It is a new form of next generation power grid. Most of the countries across the globe are transforming their existing electrical grids to smart grid and hence smart grid technology is progressing worldwide. Smart grid provides a bi-directional flow of electricity and information from generation to transmission to distribution and hence more exposed to attacks. Many advanced communication technologies have been identified for smart grid usages. A secure communication infrastructure is a critical component of smart grid systems. Success of smart grids highly depends on secure communication network. Thus cyber security of smart grid networks is very important. In this paper, we summarize the cyber security threats, possible vulnerabilities and existing standards and solutions available for cyber security in smart grids networks based on the available reference material. DOI: 10.17762/ijritcc2321-8169.15050

    Software Defined Networking for Smart Grid Communications

    Get PDF
    Emerging Software Defined Networking (SDN) technology has provided excellent flexibility to large-scale networks in terms of control, management, security, and maintenance. On the other hand, recent years witnessed a tremendous growth of the critical infrastructure networks, namely the Smart-Grid, in terms of its underlying communication infrastructure. Such large local networks requires significant effort in terms of network management and security. We explore the potential utilization of the SDN technology over the Smart Grid communication architecture. Specifically, we introduce three novel SDN deployment scenarios in local networks of Smart Grid. Moreover, we also investigate the pertinent security aspects with each deployment scenario along with possible solutions. On the other hand, we conducted experiments by using actual Smart Grid communication data to assess the recovery performance of the proposed SDN-based system. The results show that SDN is a viable technology for the Smart Grid communications with almost negligible delays in switching to backup wireless links

    Event-Oriented Dynamic Security Service for Demand Response in Smart Grid Employing Mobile Networks

    Get PDF
    Equipped with millions of sensors and smart meters in smart gird, a reliable and resilient wireless communication technology is badly needed. Mobile networks are among the major energy communication networks which contribute to global energy consumption increase rapidly. As one of core technologies of smart grid employing mobile networks, Demand Response (DR) helps improving efficiency, reliability and security for electric power grid infrastructure. Security of DR events is one of the most important issues in DR. However, the security requirements of different DR events are dynamic for variousactual demands. To address this, an event-oriented dynamic security service mechanism is proposed for DR. Three kinds of security services including security access service, security communication service and security analysis service for DR event are composited dynamically by the fine-grained sub services. An experiment prototype of the network of State Grid Corporation of China (SGCC) is established. Experiment and evaluations shows the feasibility and effectiveness of the proposed scheme in smart grid employing mobile network

    Security Principles of Smart Grid Networks

    Get PDF
    Increased power consumption and power supply variability require implementation of modern tools for intelligent management and control of grid networks. One of the most promising advancements in technology is the Smart Grid network. Unfortunately, this technology is still rapidly evolving and at this point contains many security issues. As recent attacks have shown, only some of these issues are known. This paper is using a systematic approach to detect these issues and to analyze all types of attacks on the Smart Grid networks. The last part of the paper proposes solution models for securing Smart Grid networks against found vulnerabilities

    Digital Twinning in Smart Grid Networks: Interplay, Resource Allocation and Use Cases

    Full text link
    Motivated by climate change, increasing industrialization and energy reliability concerns, the smart grid is set to revolutionize traditional power systems. Moreover, the exponential annual rise in number of grid-connected users and emerging key players e.g. electric vehicles strain the limited radio resources, which stresses the need for novel and scalable resource management techniques. Digital twin is a cutting-edge virtualization technology that has shown great potential by offering solutions for inherent bottlenecks in traditional wireless networks. In this article, we set the stage for various roles digital twinning can fulfill by optimizing congested radio resources in a proactive and resilient smart grid. Digital twins can help smart grid networks through real-time monitoring, advanced precise modeling and efficient radio resource allocation for normal operations and service restoration following unexpected events. However, reliable real-time communications, intricate abstraction abilities, interoperability with other smart grid technologies, robust computing capabilities and resilient security schemes are some open challenges for future work on digital twins.Comment: 7 pages, 3 figure

    Architecture for satellite services over cryptographically heterogeneous networks with application into smart grid

    Get PDF
    The rapid growth in the demand for Future Internet services with many emerging group applications has driven the development of satellite, which is the preferred delivery mechanism due to its wide area coverage, multicasting capability and speed to deliver affordable future services. Nevertheless, security has been one of the obstacles for both satellite services as well as smart grid group applications, especially with logical/geographical/cryptographic domains spanning heterogeneous networks and regions. In this paper, adaptive security architecture is implemented to protect satellite services for smart grid group applications. The focus is on key management and policy provisioning. Leveraging Group Domain of Interpretation (GDOI) as the standard for smart grid centralized key/policy management architecture, a single Domain of Interpretation (DOI) is deployed and evaluated critically in terms of the added protocol signaling overhead on the satellite system for a fixed-network scenario. This also partially realizes the growing trend towards the use of TCP/IP technology for smart grid applications

    Modelling for Improved Cyber Security in Smart Distribution System

    Get PDF
    Information technology is the backbone of the smart grid, where all networks like generation, transmission, distribution, and customer components are connected to each other. Connectivity between these components offers many advantages including consumer�s ability to manage their electricity consumption rates and electricity bills etc. Smart grid also provides operators great extent of system visibility and control over electricity services, supervision and control of generating units, power quality improvements and reduced fuel cost etc. Highly connected infrastructure in smart grid threats the reliable operation of grid, especially in terms of cyber security. In automated system, where control actions can be generated by a single command even from a great distance may lead complete shutdown of the whole system. Failure/disoperation of power service suspends all critical services. Therefore, the electrical grid becomes the most significant target for acts of vandalism and terrorism. So an extensive security against the cyber-attacks is required in smart grid environment as compare to traditional electricity grid, where almost all control actions were taken manually or with little use of local controllers. Therefore, with control atomization modulation of traditional energy supply system into a smart network requires a huge investment to develop security strategies as a safeguard for this critical infrastructure

    SECURE AND RELIABLE POWER SUPPLY WITH CHALLENGES- SMART GRID

    Get PDF
    Smart Grid implementations will certainly increase the quantity, quality and use of information available from advanced sensing, computing and communications hardware as well as software. There is virtually universal agreement that it is necessary to upgrade the electric grid to increase overall system efficiency and reliability. Many technologies currently in use by the grid is outdated and in many cases unreliable. The reliance on old technology leads to inefficient systems, costing unnecessary money to the utilities, consumers and taxpayers. To upgrade the grid and to operate an improved grid will require significant dependence on distributed intelligence and broadband communication capabilities. The access and communications capabilities require the latest in security technology which are reliable for extremely large, wide-area communications networks. This paper discusses features, reasons of development, barriers and their solutions for a smart grid system

    Power‐Over‐Fiber Applications for Telecommunications and for Electric Utilities

    Get PDF
    Beyond telecommunications, optical fibers can also transport optical energy to powering electric or electronic devices remotely. This technique is called power over fiber (PoF). Besides the advantages of optical fiber (immunity to electromagnetic interferences and electrical insulation), the employment of a PoF scheme can eliminate the energy supplied by metallic cable and batteries located at remote sites, improving the reliability and the security of the system. Smart grid is a green field where PoF can be applied. Experts see smart grid as the output to a new technological level seeks to incorporate extensively technologies for sensing, monitoring, information technology, and telecommunications for the best performance electrical network. On the other hand, in telecommunications, PoF can be used in applications, such as remote antennas and extenders for passive optical networks (PONs). PoF can make them virtually passives. We reviewed the PoF concept, its main elements, technologies, and applications focusing in access networks and in smart grid developments made by the author’s research group

    Special section on smart grids: A hub of interdisciplinary research : IEEE ACCESS Special section editorial smart grids: A hub of interdisciplinary research

    Get PDF
    International audienceThe smart grid is an important hub of interdisciplinary research where researchers from different areas of science and technology combine their efforts to enhance the traditional electrical power grid. Due to these efforts, the traditional electrical grid is now evolving. The envisioned smart grid will bring social, environmental, ethical, legal and economic benefits. Smart grid systems increasingly involve machine-to-machine communication as well as human-to-human, or simple information retrieval. Thus, the dimensionality of the system is massive. The smart grid is the combination of different technologies, including control system theory, communication networks, pervasive computing , embedded sensing devices, electric vehicles, smart cities, renewable energy sources, Internet of Things, wireless sensor networks, cyber physical systems, and green communication. Due to these diverse activities and significant attention from researchers, education activities in the smart grid area are also growing. The smart grid is designed to replace the traditional electrical power grid. The envisioned smart grid typically consists of three networks: Home Area Networks (HANs), Neighborhood Area Networks (NANs), and Wide Area Networks (WANs). HANs connect the devices within the premises of the consumer and connect smart meters, Plug-in Electric Vehicles (PEVs), and distributed renewable energy sources. NANs connect multiple HANs and communicate the collected information to a network gateway. WANs serve as the communication backbone. Communication technologies play a vital role in the successful operation of smart grid. These communication technologies can be adopted based upon the specific features required by HANs, NANs, and WANs. Both wired and the wireless communication technologies can be used in the smart grid [1]. However, wireless communication technologies are suitable for many smart grid applications due to the continuous development in the wireless research domain. One drawback of wireless communication technologies is the limited availability of radio spectrum. The use of cognitive radio in smart grid communication will be helpful to break the spectrum gridlock through advanced radio design and operating in multiple settings, such as underlay, overlay, and interweave [2]. The smart grid is the combination of diverse sets of facilities and technologies. Thus, the monitoring and control of transmission lines, distribution facilities, energy generation plants, and as well as video monitoring of consumer premises can be conducted through the use of wireless sensor networks [3]–[6]. In remote sites and places where human intervention is not possible, wireless sensor and actuator networks can be useful for the successful smart grid operation [7], [8]. Since wireless sensor networks operate on the Industrial, Scientific, and Medical (ISM) band, the spectrum might get congested due to overlaid deployment of wireless sensor networks in the same premises. Thus, to deal with this spectrum congestion challenge, cognitive radio sensor networks can be used in smart grid environments [9], [10]. The objective of this Special Section in IEEE ACCESS is to showcase the most recent advances in the interdisciplinary research areas encompassing the smart grid. This Special Section brings together researchers from diverse fields and specializations, such as communications engineering, computer science, electrical and electronics engineering, educators, mathematicians and specialists in areas related to smart grids. In this Special Section, we invited researchers from academia, industry, and government to discuss challenging ideas, novel research contributions, demonstration results, and standardization efforts on the smart grid and related areas. This Special Section is a collection of eleven articles. These articles are grouped into the following four areas: (a) Reliability, security, and privacy for smart grid, (b), Demand response management, understanding customer behavior, and social networking applications for smart grid, (c) Smart cities, renewable energy, and green smart grid, and (d) Communication technologies, control and management for the smart grid
    corecore