28,403 research outputs found

    What Ukraine Taught NATO about Hybrid Warfare

    Get PDF
    Russia’s invasion of Ukraine in 2022 forced the United States and its NATO partners to be confronted with the impact of hybrid warfare far beyond the battlefield. Targeting Europe’s energy security, Russia’s malign influence campaigns and malicious cyber intrusions are affecting global gas prices, driving up food costs, disrupting supply chains and grids, and testing US and Allied military mobility. This study examines how hybrid warfare is being used by NATO’s adversaries, what vulnerabilities in energy security exist across the Alliance, and what mitigation strategies are available to the member states. Cyberattacks targeting the renewable energy landscape during Europe’s green transition are increasing, making it urgent that new tools are developed to protect these emerging technologies. No less significant are the cyber and information operations targeting energy security in Eastern Europe as it seeks to become independent from Russia. Economic coercion is being used against Western and Central Europe to stop gas from flowing. China’s malign investments in Southern and Mediterranean Europe are enabling Beijing to control several NATO member states’ critical energy infrastructure at a critical moment in the global balance of power. What Ukraine Taught NATO about Hybrid Warfare will be an important reference for NATO officials and US installations operating in the European theater.https://press.armywarcollege.edu/monographs/1952/thumbnail.jp

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    Identifying Security-Critical Cyber-Physical Components in Industrial Control Systems

    Get PDF
    In recent years, Industrial Control Systems (ICS) have become an appealing target for cyber attacks, having massive destructive consequences. Security metrics are therefore essential to assess their security posture. In this paper, we present a novel ICS security metric based on AND/OR graphs that represent cyber-physical dependencies among network components. Our metric is able to efficiently identify sets of critical cyber-physical components, with minimal cost for an attacker, such that if compromised, the system would enter into a non-operational state. We address this problem by efficiently transforming the input AND/OR graph-based model into a weighted logical formula that is then used to build and solve a Weighted Partial MAX-SAT problem. Our tool, META4ICS, leverages state-of-the-art techniques from the field of logical satisfiability optimisation in order to achieve efficient computation times. Our experimental results indicate that the proposed security metric can efficiently scale to networks with thousands of nodes and be computed in seconds. In addition, we present a case study where we have used our system to analyse the security posture of a realistic water transport network. We discuss our findings on the plant as well as further security applications of our metric.Comment: Keywords: Security metrics, industrial control systems, cyber-physical systems, AND-OR graphs, MAX-SAT resolutio

    Automated security analysis in a SCADA system

    Get PDF
    Supervisory control and data acquisition (SCADA) is a computer system for analysing, and monitoring data, as well as, controlling a plant in industries such as power grids, oil, gas refining, and water control. SCADA belongs to the category of critical systems that are needed to maintain the infrastructure of cities and households. Therefore, the security aspect of such a system has a significant role. The early SCADA systems were designed with the operation as the primary concern rather than security since they were a monolithic networked system without external access. However, the systems evolved, and SCADA systems were embedded with web technologies for users to monitor the data externally. These changes improved the efficiency of monitoring and productivity; however, this caused a problem of potential cyber-attacks to a SCADA system. One such example was Ukraine's power grid blackout in 2015. Therefore, it is beneficial for the security of a SCADA system to create a threat modeling technique that can understand the critical components of SCADA, discover potential threats, and propose possible mitigation strategies. One issue when creating a threat model is the significant difference of SCADA from traditional Operational Technology (OT) systems. Another significant issue is that SCADA is a highly customisable system, and each SCADA instance can have different components. Therefore, for this work, we implemented a threat modeling language scadaLang, which is specific to the domain of a SCADA system. We started by defining the major assets of a SCADA system, attackers, entry surfaces, and built attacks and defense strategies. Then we developed a threat modeling domain-specific language scadaLang that can create a threat model for a particular instance of SCADA taking the differences in components and connections into account. As a result, we achieved a threat modeling language for SCADA, ensured the reliability of the results by peer-reviewing of an engineer familiar with the domain of the problem, and proposed a Turing test to ensure the validity of the result of scadaLang as the future development of the project

    CBRN Threats and the Economic Analysis of Terrorism

    Get PDF
    The aim of this paper is to investigate the economic aspects of CBRN threats. For this purpose, the extent to which this topic is reflected in freely-accessible academic literature and the costs associated with such threats will be assessed. Furthermore, it is to be determined which industries have a particular interest in security against such CBRN threats.

    Codifying Information Assurance Controls for Department of Defense (DoD) Supervisory Control and Data Acquisition (SCADA) Systems (U)

    Get PDF
    Protecting DoD critical infrastructure resources and Supervisory Control and Data Acquisition (SCADA) systems from cyber attacks is becoming an increasingly challenging task. DoD Information Assurance controls provide a sound framework to achieve an appropriate level of confidentiality, integrity, and availability. However, these controls have not been updated since 2003 and currently do not adequately address the security of DoD SCADA systems. This research sampled U.S. Air Force Civil Engineering subject matter experts representing eight Major Commands that manage and operate SCADA systems. They ranked 30 IA controls in three categories, and evaluated eight SCADA specific IA controls for inclusion into the DoD IA control framework. Spearman’s Rho ranking results (ρ = .972414) indicate a high preference for encryption, and system and information integrity as key IA Controls to mitigate cyber risk. Equally interesting was the strong agreement among raters on ranking certification and accreditation dead last as an effective IA control. The respondents strongly favored including four new IA controls of the eight considered
    corecore