2,007 research outputs found

    SecREP : A Framework for Automating the Extraction and Prioritization of Security Requirements Using Machine Learning and NLP Techniques

    Get PDF
    Gathering and extracting security requirements adequately requires extensive effort, experience, and time, as large amounts of data need to be analyzed. While many manual and academic approaches have been developed to tackle the discipline of Security Requirements Engineering (SRE), a need still exists for automating the SRE process. This need stems mainly from the difficult, error-prone, and time-consuming nature of traditional and manual frameworks. Machine learning techniques have been widely used to facilitate and automate the extraction of useful information from software requirements documents and artifacts. Such approaches can be utilized to yield beneficial results in automating the process of extracting and eliciting security requirements. However, the extraction of security requirements alone leaves software engineers with yet another tedious task of prioritizing the most critical security requirements. The competitive and fast-paced nature of software development, in addition to resource constraints make the process of security requirements prioritization crucial for software engineers to make educated decisions in risk-analysis and trade-off analysis. To that end, this thesis presents an automated framework/pipeline for extracting and prioritizing security requirements. The proposed framework, called the Security Requirements Extraction and Prioritization Framework (SecREP) consists of two parts: SecREP Part 1: Proposes a machine learning approach for identifying/extracting security requirements from natural language software requirements artifacts (e.g., the Software Requirement Specification document, known as the SRS documents) SecREP Part 2: Proposes a scheme for prioritizing the security requirements identified in the previous step. For the first part of the SecREP framework, three machine learning models (SVM, Naive Bayes, and Random Forest) were trained using an enhanced dataset the “SecREP Dataset” that was created as a result of this work. Each model was validated using resampling (80% of for training and 20% for validation) and 5-folds cross validation techniques. For the second part of the SecREP framework, a prioritization scheme was established with the aid of NLP techniques. The proposed prioritization scheme analyzes each security requirement using Part-of-speech (POS) and Named Entity Recognition methods to extract assets, security attributes, and threats from the security requirement. Additionally, using a text similarity method, each security requirement is compared to a super-sentence that was defined based on the STRIDE threat model. This prioritization scheme was applied to the extracted list of security requirements obtained from the case study in part one, and the priority score for each requirement was calculated and showcase

    Dynamic risk assessment in IT environments: a decision guide

    Get PDF
    Security and reliability of information technologies have emerged as major concerns nowadays. Risk assessment, an estimation of negative impacts that might be imposed to a network by a series of potential sources, is one of the main tasks to ensure the security and is performed either statically or dynamically. Static risk assessment cannot satisfy the requirements of real-time and ubiquitous computing networks as it is pre-planned and does not consider upcoming changes such as the creation of new attack strategies. However, dynamic risk assessment (DRA) considers real-time evidences, being capable of diagnosing abnormal events in changing environments. Several DRA approaches have been proposed recently, but it is unclear which technique fits best into IT scenarios with different requirements. Thus, this chapter introduces recent trends in DRA, by analyzing 27 works and proposes a decision guide to help IT managers in choosing the most suitable DRA technique considering three illustrative scenarios – regular computer networks, internet of things, and industrial control systems

    Quantifying Impact of Cyber Actions on Missions or Business Processes: A Multilayer Propagative Approach

    Get PDF
    Ensuring the security of cyberspace is one of the most significant challenges of the modern world because of its complexity. As the cyber environment is getting more integrated with the real world, the direct impact of cybersecurity problems on actual business frequently occur. Therefore, operational and strategic decision makers in particular need to understand the cyber environment and its potential impact on business. Cyber risk has become a top agenda item for businesses all over the world and is listed as one of the most serious global risks with significant financial implications for businesses. Risk analysis is one of the primary tools used in this endeavor. Impact assessment, as an integral part of risk analysis, tries to estimate the possible damage of a cyber threat on business. It provides the main insight into risk prioritization as it incorporates business requirements into risk analysis for a better balance of security and usability. Moreover, impact assessment constitutes the main body of information flow between technical people and business leaders. Therefore, it requires the effective synergy of technological and business aspects of cybersecurity for protection against cyber threats. The purpose of this research is to develop a methodology to quantify the impact of cybersecurity events, incidents, and threats. The developed method addresses the issue of impact quantification from an interdependent system of systems point of view. The objectives of this research are (1) developing a quantitative model to determine the impact propagation within a layer of an enterprise (i.e., asset, service or business process layer); (2) developing a quantitative model to determine the impact propagation among different layers within an enterprise; (3) developing an approach to estimate the economic cost of a cyber incident or event. Although there are various studies in cybersecurity risk quantification, only a few studies focus on impact assessment at the business process layer by considering ripple effects at both the horizontal and vertical layers. This research develops an approach that quantifies the economic impact of cyber incidents, events and threats to business processes by considering the horizontal and vertical interdependencies and impact propagation within and among layers

    A stochastic multi-criteria assessment of security of transportation assets

    Get PDF
    Transportation project evaluation and prioritization use traditional performance measures including travel time, safety, user costs, economic efficiency, and environmental quality. The project impacts in terms of enhancing the infrastructure resilience or mitigating the consequences of infrastructure damage in the event of disaster occurrence are rarely considered in project evaluation. This dissertation presents a methodology to address this issue so that in evaluating and prioritizing investments, infrastructure with low security can receive the attention they deserve. Secondly, the methodology can be used for evaluating and prioritizing candidate investments dedicated specifically to security enhancement. In defining security as a function of threat likelihood, asset resilience and damage consequences, this dissertation uses security-related considerations in investment prioritization thus adding further robustness in traditional evaluations. As this leads to an increase in the number of performance criteria in the evaluation, the dissertation adopts a multiple-criteria analysis approach. The methodology quantifies the overall security level for an infrastructure in terms of the threats it faces, its resilience to damage, and the consequences in the event of the infrastructure damage. The dissertation demonstrates that it is feasible to develop a security-related measure that can be used as a performance criterion in the evaluation of general transportation projects or projects dedicated specifically towards security improvement. Through a case study, the dissertation applies the methodology by measuring the risk (and hence, security) of each for bridge infrastructure in Indiana. The method was also fuzzified and a Monte Carlo simulation was run to account for unknown data and uncertainty. On the basis of the multiple types of impacts including risk impacts such as the increase in security due to each candidate investment, this dissertation shows how to prioritize security investments across the multiple infrastructure assets using multiple-criteria analysis

    Review and Evaluation of the J100â 10 Risk and Resilience Management Standard for Water and Wastewater Systems

    Full text link
    Risk analysis standards are often employed to protect critical infrastructures, which are vital to a nation’s security, economy, and safety of its citizens. We present an analysis framework for evaluating such standards and apply it to the J100â 10 risk analysis standard for water and wastewater systems. In doing so, we identify gaps between practices recommended in the standard and the state of the art. While individual processes found within infrastructure risk analysis standards have been evaluated in the past, we present a foundational review and focus specifically on water systems. By highlighting both the conceptual shortcomings and practical limitations, we aim to prioritize the shortcomings needed to be addressed. Key findings from this study include (1) risk definitions fail to address notions of uncertainty, (2) the sole use of â worst reasonable caseâ assumptions can lead to mischaracterizations of risk, (3) analysis of risk and resilience at the threatâ asset resolution ignores dependencies within the system, and (4) stakeholder values need to be assessed when balancing the tradeoffs between risk reduction and resilience enhancement.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154262/1/risa13421_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154262/2/risa13421.pd

    Risk Assessment Framework for Evaluation of Cybersecurity Threats and Vulnerabilities in Medical Devices

    Get PDF
    Medical devices are vulnerable to cybersecurity exploitation and, while they can provide improvements to clinical care, they can put healthcare organizations and their patients at risk of adverse impacts. Evidence has shown that the proliferation of devices on medical networks present cybersecurity challenges for healthcare organizations due to their lack of built-in cybersecurity controls and the inability for organizations to implement security controls on them. The negative impacts of cybersecurity exploitation in healthcare can include the loss of patient confidentiality, risk to patient safety, negative financial consequences for the organization, and loss of business reputation. Assessing the risk of vulnerabilities and threats to medical devices can inform healthcare organizations toward prioritization of resources to reduce risk most effectively. In this research, we build upon a database-driven approach to risk assessment that is based on the elements of threat, vulnerability, asset, and control (TVA-C). We contribute a novel framework for the cybersecurity risk assessment of medical devices. Using a series of papers, we answer questions related to the risk assessment of networked medical devices. We first conducted a case study empirical analysis that determined the scope of security vulnerabilities in a typical computerized medical environment. We then created a cybersecurity risk framework to identify threats and vulnerabilities to medical devices and produce a quantified risk assessment. These results supported actionable decision making at managerial and operational levels of a typical healthcare organization. Finally, we applied the framework using a data set of medical devices received from a partnering healthcare organization. We compare the assessment results of our framework to a commercial risk assessment vulnerability management system used to analyze the same assets. The study also compares our framework results to the NIST Common Vulnerability Scoring System (CVSS) scores related to identified vulnerabilities reported through the Common Vulnerability and Exposure (CVE) program. As a result of these studies, we recognize several contributions to the area of healthcare cybersecurity. To begin with, we provide the first comprehensive vulnerability assessment of a robotic surgical environment, using a da Vinci surgical robot along with its supporting computing assets. This assessment supports the assertion that networked computer environments are at risk of being compromised in healthcare facilities. Next, our framework, known as MedDevRisk, provides a novel method for risk quantification. In addition, our assessment approach uniquely considers the assets that are of value to a medical organization, going beyond the medical device itself. Finally, our incorporation of risk scenarios into the framework represents a novel approach to medical device risk assessment, which was synthesized from other well-known standards. To our knowledge, our research is the first to apply a quantified assessment framework to the problem area of healthcare cybersecurity and medical networked devices. We would conclude that a reduction in the uncertainty about the riskiness of the cybersecurity status of medical devices can be achieved using this framework

    Value network modeling : a quantitative method for comparing benefit across exploration architectures

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 167-170).In the design of complex systems serving a broad group of stakeholders, it can be difficult to prioritize objectives for the architecture. I postulate that it is possible to make architectural decisions based on consideration of stakeholder value delivery, in order to help prioritize objectives. I introduce the concept of value network models to map out the indirect benefit delivered to stakeholders. A numerical methodology for prioritizing paths through this network model is presented, with a view to discovering the most important organizational outputs. I show how value network models can be linked to architecture models to provide decision support to the architect. I present a case study to examine the connectivity and sensitivity of a test architecture to value delivery. I conclude that a limited subset of NASA's outputs will discriminate between architectures. In this manner, I show how value considerations can be used to structure the design space before critical technical decisions are made to narrow it. A number of organizational implications for value delivery are generated from this analysis. In particular, I show that benefit flows should be aligned to organizational processes and responsibilities, and that failure to map stakeholder input to architecture evaluation can weaken benefit.by Bruce G. Cameron.S.M

    DrAGON: A Framework for Computing Preferred Defense Policies from Logical Attack Graphs

    Get PDF
    Attack graphs provide formalism for modelling the vulnerabilities using a compact representation scheme. Two of the most popular attack graph representations are scenario attack graphs, and logical attack graphs. In logical attack graphs, the host machines present in the network are represented as exploit nodes, while the configurations (IDS rules, firewall policies etc.) running on them are represented as fact nodes. The actual user privileges that are possible on each of these hosts are represented as privilege nodes. Existing work provides methods to analyze logical attack graphs and compute attack paths of varying costs. In this thesis we develop a framework for analyzing the attack graph from a defender perspective. Given an acyclic logical dependency attack graph we compute defense policies that cover all known exploits that can be used by the attacker and also are preferred with respect to minimizing the impacts. In contrast to previous work on analysis of logical attack graphs where quantitative costs are assigned to the vulnerabilities (exploits), our framework allows attack graph analysis using descriptions of vulnerabilities on a qualitative scale. We develop two algorithms for computing preferred defense policies that are optimal with respect to defender preferences. Our research to the best of our knowledge is the first fully qualitative approach to analyzing these logical attack graphs and formulating defense policies based on the preferences and priorities of the defender. We provide a prototype implementation of our framework that allows logical attack graphs to be input using a simple text file (custom language), or using a GUI tool in graphical markup language (GML) format. Our implementation uses the NVD (National Vulnerability Database) as the source of CVSS impact metrics for vulnerabilities in the attack graph. Our framework generates a preferred order of defense policies using an existing preference reasoner. Preliminary experiments on various attack graphs show the correctness and efficiency of our approach

    Evaluating practitioner cyber-security attack graph configuration preferences

    Get PDF
    Attack graphs and attack trees are a popular method of mathematically and visually rep- resenting the sequence of events that lead to a successful cyber-attack. Despite their popularity, there is no standardised attack graph or attack tree visual syntax configuration, and more than seventy self-nominated attack graph and twenty attack tree configurations have been described in the literature - each of which presents attributes such as preconditions and exploits in a different way. This research proposes a practitioner-preferred attack graph visual syntax configuration which can be used to effectively present cyber-attacks. Comprehensive data on participant ( n=212 ) preferences was obtained through a choice based conjoint design in which participants scored attack graph configuration based on their visual syntax preferences. Data was obtained from multiple participant groups which included lecturers, students and industry practitioners with cyber-security specific or general computer science backgrounds. The overall analysis recommends a winning representation with the following attributes. The flow of events is represented top-down as in a flow diagram - as opposed to a fault tree or attack tree where it is presented bottom-up, preconditions - the conditions required for a successful exploit, are represented as ellipses and exploits are represented as rectangles. These results were consistent across the multiple groups and across scenarios which differed according to their attack complexity. The research tested a number of bottom-up approaches - similar to that used in attack trees. The bottom-up designs received the lowest practitioner preference score indicating that attack trees - which also utilise the bottom-up method, are not a preferred design amongst practitioners - when presented with an alternative top-down design. Practitioner preferences are important for any method or framework to become accepted, and this is the first time that an attack modelling technique has been developed and tested for practitioner preferences

    Model za praćenje usklađenosti između bezbednosnih standarda i prioritizaciju zahteva u kritičnim infrastruktirama

    Get PDF
    This thesis presents research in the field of information security. We present a model that uniformly represents the building blocks of the security requirements that are defined in various standards, security guidelines, and regulations for Critical Infrastructure. We analyze the structure of the requirements in the most commonly used standards for this purpose. We have extended the model with components to prioritize and track the implementation and compliance of similar requirements selected from different security publications. We define prioritization criteria for selecting the requirements for implementation that rely on four factors: risk assessment results, essence levels of the requirements set that is analyzed, dependency graph of the social actors involved in the implementation, and the domain affiliation of the requirement. We also define a framework with a set of activities that follow the elements of the proposed model to demonstrate its practical applicability
    corecore