3,617 research outputs found

    Random Oracles in a Quantum World

    Get PDF
    The interest in post-quantum cryptography - classical systems that remain secure in the presence of a quantum adversary - has generated elegant proposals for new cryptosystems. Some of these systems are set in the random oracle model and are proven secure relative to adversaries that have classical access to the random oracle. We argue that to prove post-quantum security one needs to prove security in the quantum-accessible random oracle model where the adversary can query the random oracle with quantum states. We begin by separating the classical and quantum-accessible random oracle models by presenting a scheme that is secure when the adversary is given classical access to the random oracle, but is insecure when the adversary can make quantum oracle queries. We then set out to develop generic conditions under which a classical random oracle proof implies security in the quantum-accessible random oracle model. We introduce the concept of a history-free reduction which is a category of classical random oracle reductions that basically determine oracle answers independently of the history of previous queries, and we prove that such reductions imply security in the quantum model. We then show that certain post-quantum proposals, including ones based on lattices, can be proven secure using history-free reductions and are therefore post-quantum secure. We conclude with a rich set of open problems in this area.Comment: 38 pages, v2: many substantial changes and extensions, merged with a related paper by Boneh and Zhandr

    Hardware authentication based on PUFs and SHA-3 2nd round candidates

    Get PDF
    Security features are getting a growing interest in microelectronics. Not only entities have to authenticate in the context of a high secure communication but also the hardware employed has to be trusted. Silicon Physical Unclonable Functions (PUFs) or Physical Random Functions, which exploits manufacturing process variations in integrated circuits, have been used to authenticate the hardware in which they are included and, based on them, several cryptographic protocols have been reported. This paper describes the hardware implementation of a symmetric-key authentication protocol in which a PUF is one of the relevant blocks. The second relevant block is a SHA-3 2nd round candidate, a Secure Hash Algorithm (in particular Keccak), which has been proposed to replace the SHA-2 functions that have been broken no long time ago. Implementation details are discussed in the case of Xilinx FPGAs.Junta de AndalucĂ­a P08-TIC-03674Comunidad Europea FP7-INFSO-ICT-248858Ministerio de Ciencia y TecnologĂ­a TEC2008-04920 y DPI2008-0384

    Asymptotic Analysis of Plausible Tree Hash Modes for SHA-3

    Get PDF
    Discussions about the choice of a tree hash mode of operation for a standardization have recently been undertaken. It appears that a single tree mode cannot address adequately all possible uses and specifications of a system. In this paper, we review the tree modes which have been proposed, we discuss their problems and propose remedies. We make the reasonable assumption that communicating systems have different specifications and that software applications are of different types (securing stored content or live-streamed content). Finally, we propose new modes of operation that address the resource usage problem for the three most representative categories of devices and we analyse their asymptotic behavior

    Optimization of Tree Modes for Parallel Hash Functions: A Case Study

    Full text link
    This paper focuses on parallel hash functions based on tree modes of operation for an inner Variable-Input-Length function. This inner function can be either a single-block-length (SBL) and prefix-free MD hash function, or a sponge-based hash function. We discuss the various forms of optimality that can be obtained when designing parallel hash functions based on trees where all leaves have the same depth. The first result is a scheme which optimizes the tree topology in order to decrease the running time. Then, without affecting the optimal running time we show that we can slightly change the corresponding tree topology so as to minimize the number of required processors as well. Consequently, the resulting scheme decreases in the first place the running time and in the second place the number of required processors.Comment: Preprint version. Added citations, IEEE Transactions on Computers, 201

    3-Message Zero Knowledge Against Human Ignorance

    Get PDF
    The notion of Zero Knowledge has driven the field of cryptography since its conception over thirty years ago. It is well established that two-message zero-knowledge protocols for NP do not exist, and that four-message zero-knowledge arguments exist under the minimal assumption of one-way functions. Resolving the precise round complexity of zero-knowledge has been an outstanding open problem for far too long. In this work, we present a three-message zero-knowledge argument system with soundness against uniform polynomial-time cheating provers. The main component in our construction is the recent delegation protocol for RAM computations (Kalai and Paneth, TCC 2016B and Brakerski, Holmgren and Kalai, ePrint 2016). Concretely, we rely on a three-message variant of their protocol based on a key-less collision-resistant hash functions secure against uniform adversaries as well as other standard primitives. More generally, beyond uniform provers, our protocol provides a natural and meaningful security guarantee against real-world adversaries, which we formalize following Rogaway’s “human-ignorance” approach (VIETCRYPT 2006): in a nutshell, we give an explicit uniform reduction from any adversary breaking the soundness of our protocol to finding collisions in the underlying hash function.National Science Foundation (U.S.) (Award CNS-1350619)National Science Foundation (U.S.) (Award CNS-1413964

    Quantum attacks on Bitcoin, and how to protect against them

    Get PDF
    The key cryptographic protocols used to secure the internet and financial transactions of today are all susceptible to attack by the development of a sufficiently large quantum computer. One particular area at risk are cryptocurrencies, a market currently worth over 150 billion USD. We investigate the risk of Bitcoin, and other cryptocurrencies, to attacks by quantum computers. We find that the proof-of-work used by Bitcoin is relatively resistant to substantial speedup by quantum computers in the next 10 years, mainly because specialized ASIC miners are extremely fast compared to the estimated clock speed of near-term quantum computers. On the other hand, the elliptic curve signature scheme used by Bitcoin is much more at risk, and could be completely broken by a quantum computer as early as 2027, by the most optimistic estimates. We analyze an alternative proof-of-work called Momentum, based on finding collisions in a hash function, that is even more resistant to speedup by a quantum computer. We also review the available post-quantum signature schemes to see which one would best meet the security and efficiency requirements of blockchain applications.Comment: 21 pages, 6 figures. For a rough update on the progress of Quantum devices and prognostications on time from now to break Digital signatures, see https://www.quantumcryptopocalypse.com/quantum-moores-law

    Robust Multi-property Combiners for Hash Functions Revisited

    Get PDF
    • …
    corecore