37 research outputs found

    An Enhanced Dataflow Analysis to Automatically Tailor Side Channel Attack Countermeasures to Software Block Ciphers

    Get PDF
    Protecting software implementations of block ciphers from side channel attacks is a significant concern to realize secure embedded computation platforms. The relevance of the issue calls for the automation of the side channel vulnerability assessment of a block cipher implementation, and the automated application of provably secure defenses. The most recent methodology in the field is an application of a specialized data-flow analysis, performed by means of the LLVM compiler framework, detecting in the AES cipher the portions of the code amenable to key extraction via side channel analysis. The contribution of this work is an enhancement to the existing data-flow analysis which extending it to tackle any block cipher implemented in software. In particular, the extended strategy takes fully into account the data dependencies present in the key schedule of a block cipher, regardless of its complexity, to obtain consistently sound results. This paper details the analysis strategy and presents new results on the tailored application of power and electro-magnetic emission analysis countermeasures, evaluating the performances on both the ARM Cortex-M and the MIPS ISA. The experimental evaluation reports a case study on two block ciphers: the first designed to achieve a high security margin at a non-negligible computational cost, and a lightweight one. The results show that, when side-channel-protected implementations are considered, the high-security block cipher is indeed more efficient than the lightweight one

    Quantum Implementation and Analysis of DEFAULT

    Get PDF
    In this paper, we present the quantum implementation and analysis of the recently proposed block cipher, DEFAULT. DEFAULT is consisted of two components, namely DEFAULT-LAYER and DEFAULT-CORE. Two instances of DEFAULT-LAYER is used before and after DEFAULT-CORE (the so-called `sandwich construction\u27). We discuss about the the various choices made to keep the cost for the basic quantum circuit and that of the Grover\u27s oracle search, and compare it with the levels of quantum security specified by the United States\u27 National Institute of Standards and Technology (NIST). All in all, our work nicely fits in the research trend of finding the possible quantum vulnerability of symmetric key ciphers

    A First DFA on PRIDE: from Theory to Practice (extended version)

    Get PDF
    PRIDE is one of the most effcient lightweight block cipher proposed so far for connected objects with high performance and low resource constraints. In this paper we describe the first ever complete Differential Fault Analysis against PRIDE. We describe how fault attacks can be used against implementations of PRIDE to recover the entire encryption key. Our attack has been validated first through simulations, and then in practice on a software implementation of PRIDE running on a device that could typically be used in IoT devices. Faults have been injected using electromagnetic pulses during the PRIDE execution and the faulty ciphertexts have been used to recover the key bits. We also discuss some countermeasures that could be used to thwart such attacks

    Thwarting Fault Attacks using the Internal Redundancy Countermeasure (IRC)

    Get PDF
    A growing number of connected objects, with their high performance and low-resources constraints, are embedding lightweight ciphers for protecting the confidentiality of the data they manipulate or store. Since those objects are easily accessible, they are prone to a whole range of physical attacks, one of which are fault attacks against for which countermeasures are usually expensive to implement, especially on off-the-shelf devices. For such devices, we propose a new generic software countermeasure, called the Internal Redundancy Countermeasure (IRC), to thwart most fault attacks while preserving the performances of the targeted cipher. We report practical experiments showing that IRC successfully thwarts fault attacks on the block cipher PRIDE and on the stream cipher TRIVIUM for which we protect both the initialization and the keystream generation

    A Comprehensive Survey on the Implementations, Attacks, and Countermeasures of the Current NIST Lightweight Cryptography Standard

    Full text link
    This survey is the first work on the current standard for lightweight cryptography, standardized in 2023. Lightweight cryptography plays a vital role in securing resource-constrained embedded systems such as deeply-embedded systems (implantable and wearable medical devices, smart fabrics, smart homes, and the like), radio frequency identification (RFID) tags, sensor networks, and privacy-constrained usage models. National Institute of Standards and Technology (NIST) initiated a standardization process for lightweight cryptography and after a relatively-long multi-year effort, eventually, in Feb. 2023, the competition ended with ASCON as the winner. This lightweight cryptographic standard will be used in deeply-embedded architectures to provide security through confidentiality and integrity/authentication (the dual of the legacy AES-GCM block cipher which is the NIST standard for symmetric key cryptography). ASCON's lightweight design utilizes a 320-bit permutation which is bit-sliced into five 64-bit register words, providing 128-bit level security. This work summarizes the different implementations of ASCON on field-programmable gate array (FPGA) and ASIC hardware platforms on the basis of area, power, throughput, energy, and efficiency overheads. The presented work also reviews various differential and side-channel analysis attacks (SCAs) performed across variants of ASCON cipher suite in terms of algebraic, cube/cube-like, forgery, fault injection, and power analysis attacks as well as the countermeasures for these attacks. We also provide our insights and visions throughout this survey to provide new future directions in different domains. This survey is the first one in its kind and a step forward towards scrutinizing the advantages and future directions of the NIST lightweight cryptography standard introduced in 2023

    CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection Against DFA Attacks

    Get PDF
    Traditionally, countermeasures against physical attacks are integrated into the implementation of cryptographic primitives after the algorithms have been designed for achieving a certain level of cryptanalytic security. This picture has been changed by the introduction of PICARO, ZORRO, and FIDES, where efficient protection against Side-Channel Analysis (SCA) attacks has been considered in their design. In this work we present the tweakable block cipher CRAFT: the efficient protection of its implementations against Differential Fault Analysis (DFA) attacks has been one of the main design criteria, while we provide strong bounds for its security in the related-tweak model. Considering the area footprint of round-based hardware implementations, CRAFT outperforms the other lightweight ciphers with the same state and key size. This holds not only for unprotected implementations but also when fault-detection facilities, side-channel protection, and their combination are integrated into the implementation. In addition to supporting a 64-bit tweak, CRAFT has the additional property that the circuit realizing the encryption can support the decryption functionality as well with very little area overhead

    SAND: an AND-RX Feistel lightweight block cipher supporting S-box-based security evaluations

    Get PDF
    We revisit designing AND-RX block ciphers, that is, the designs assembled with the most fundamental binary operations---AND, Rotation and XOR operations and do not rely on existing units. Likely, the most popular representative is the NSA cipher \texttt{SIMON}, which remains one of the most efficient designs, but suffers from difficulty in security evaluation. As our main contribution, we propose \texttt{SAND}, a new family of lightweight AND-RX block ciphers. To overcome the difficulty regarding security evaluation, \texttt{SAND} follows a novel design approach, the core idea of which is to restrain the AND-RX operations to be within nibbles. By this, \texttt{SAND} admits an equivalent representation based on a 4×84\times8 \textit{synthetic S-box} (SSbSSb). This enables the use of classical S-box-based security evaluation approaches. Consequently, for all versions of \texttt{SAND}, (a) we evaluated security bounds with respect to differential and linear attacks, and in both single-key and related-key scenarios; (b) we also evaluated security against impossible differential and zero-correlation linear attacks. This better understanding of the security enables the use of a relatively simple key schedule, which makes the ASIC round-based hardware implementation of \texttt{SAND} to be one of the state-of-art Feistel lightweight ciphers. As to software performance, due to the natural bitslice structure, \texttt{SAND} reaches the same level of performance as \texttt{SIMON} and is among the most software-efficient block ciphers

    CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection Against DFA Attacks

    Get PDF
    Traditionally, countermeasures against physical attacks are integrated into the implementation of cryptographic primitives after the algorithms have been designed for achieving a certain level of cryptanalytic security. This picture has been changed by the introduction of PICARO, ZORRO, and FIDES, where efficient protection against Side-Channel Analysis (SCA) attacks has been considered in their design. In this work we present the tweakable block cipher CRAFT: the efficient protection of its implementations against Differential Fault Analysis (DFA) attacks has been one of the main design criteria, while we provide strong bounds for its security in the related-tweak model. Considering the area footprint of round-based hardware implementations, CRAFT outperforms the other lightweight ciphers with the same state and key size. This holds not only for unprotected implementations but also when fault-detection facilities, side-channel protection, and their combination are integrated into the implementation. In addition to supporting a 64-bit tweak, CRAFT has the additional property that the circuit realizing the encryption can support the decryption functionality as well with very little area overhead
    corecore