13,728 research outputs found

    Cyber attack simulation and information fusion process refinement optimization models for cyber security

    Get PDF
    Cyber crime is an increasingly prominent threat to all aspects of society including businesses, government, banks, transportation, and individuals. The security of computer networks is dependent on the ability to recognize and defend against malicious cyber attacks. The goal of this thesis is to utilize operation research techniques to create tools that will significantly contribute to cyber security. A simulation framework and template is developed to efficiently represent computer networks and cyber security intrusion detection systems. The simulation is capable of generating complex cyber attacks based on the computer network configuration and the capabilities of the attacker. The simulation results in alert messages corresponding to attack actions and ordinary network behavior which are typically used by situational awareness tools or systems administrators to identify and take action against the attack. Through verification, validation, and an experimental performance evaluation, the simulation model is shown to be an effective tool to enable testing of situational awareness tools and for determining network vulnerabilities. In addition, this thesis extends the highly effective information fusion methods of situational awareness and threat assessment by introducing a method of adaptive process refinement for cyber security. The adaptive process refinement model utilizes integer programming optimization to improve the success of cyber attack detection, tracking, and identification. The process refinement model is designed to dynamically provide recommendations for optimal allocation of network detection resources subject to processing capacity, current attack activity, and network vulnerabilities. The cyber attack simulation methodology is utilized to create a set of attack scenarios on computer networks that are used conduct an experimental performance evaluation of the adaptive process refinement model to determine its capabilities and limitations. The simulation and process refinement methods provide operations research tools that will help to advance the field of cyber security

    CRUSOE: A Toolset for Cyber Situational Awareness and Decision Support in Incident Handling

    Get PDF
    The growing size and complexity of today’s computer network make it hard to achieve and maintain so-called cyber situational awareness, i.e., the ability to perceive and comprehend the cyber environment and be able to project the situation in the near future. Namely, the personnel of cybersecurity incident response teams or security operation centers should be aware of the security situation in the network to effectively prevent or mitigate cyber attacks and avoid mistakes in the process. In this paper, we present a toolset for achieving cyber situational awareness in a large and heterogeneous environment. Our goal is to support cybersecurity teams in iterating through the OODA loop (Observe, Orient, Decide, Act). We designed tools to help the operator make informed decisions in incident handling and response for each phase of the cycle. The Observe phase builds on common tools for active and passive network monitoring and vulnerability assessment. In the Orient phase, the data on the network are structured and presented in a comprehensible and visually appealing manner. The Decide phase opens opportunities for decision-support systems, in our case, a recommender system that suggests the most resilient configuration of the critical infrastructure. Finally, the Act phase is supported by a service that orchestrates network security tools and allows for prompt mitigation actions. Finally, we present lessons learned from the deployment of the toolset in the campus network and the results of a user evaluation study

    Cyber security situational awareness

    Get PDF

    Dynamic cyber-incident response

    Get PDF
    Permission to make digital or hard copies of this publication for internal use within NATO and for personal or educational use when for non-profi t or non-commercial purposes is granted providing that copies bear this notice and a full citation on the first page. Any other reproduction or transmission requires prior written permission by NATO CCD COE.Traditional cyber-incident response models have not changed significantly since the early days of the Computer Incident Response with even the most recent incident response life cycle model advocated by the US National Institute of Standards and Technology (Cichonski, Millar, Grance, & Scarfone, 2012) bearing a striking resemblance to the models proposed by early leaders in the field e.g. Carnegie-Mellon University (West-Brown, et al., 2003) and the SANS Institute (Northcutt, 2003). Whilst serving the purpose of producing coherent and effective response plans, these models appear to be created from the perspectives of Computer Security professionals with no referenced academic grounding. They attempt to defend against, halt and recover from a cyber-attack as quickly as possible. However, other actors inside an organisation may have priorities which conflict with these traditional approaches and may ultimately better serve the longer-term goals and objectives of an organisation

    Pervasive eHealth services a security and privacy risk awareness survey

    Get PDF
    The human factor is often recognised as a major aspect of cyber-security research. Risk and situational perception are identified as key factors in the decision making process, often playing a lead role in the adoption of security mechanisms. However, risk awareness and perception have been poorly investigated in the field of eHealth wearables. Whilst end-users often have limited understanding of privacy and security of wearables, assessing the perceived risks and consequences will help shape the usability of future security mechanisms. This paper present a survey of the the risks and situational awareness in eHealth services. An analysis of the lack of security and privacy measures in connected health devices is described with recommendations to circumvent critical situations

    Sonification of Network Traffic Flow for Monitoring and Situational Awareness

    Get PDF
    Maintaining situational awareness of what is happening within a network is challenging, not least because the behaviour happens within computers and communications networks, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation is widely used to present information about the dynamics of network traffic dynamics. Although it provides operators with an overall view and specific information about particular traffic or attacks on the network, it often fails to represent the events in an understandable way. Visualisations require visual attention and so are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Situational awareness is critical and essential for decision-making in the domain of computer network monitoring where it is vital to be able to identify and recognize network environment behaviours.Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system to be used in the monitoring of computer networks to support the situational awareness of network administrators. SoNSTAR provides an auditory representation of all the TCP/IP protocol traffic within a network based on the different traffic flows between between network hosts. SoNSTAR raises situational awareness levels for computer network defence by allowing operators to achieve better understanding and performance while imposing less workload compared to visual techniques. SoNSTAR identifies the features of network traffic flows by inspecting the status flags of TCP/IP packet headers and mapping traffic events to recorded sounds to generate a soundscape representing the real-time status of the network traffic environment. Listening to the soundscape allows the administrator to recognise anomalous behaviour quickly and without having to continuously watch a computer screen.Comment: 17 pages, 7 figures plus supplemental material in Github repositor

    Cyber situational awareness: from geographical alerts to high-level management

    Get PDF
    This paper focuses on cyber situational awareness and describes a visual analytics solution for monitoring and putting in tight relation data from network level with the organization business. The goal of the proposed solution is to make different security profiles (network security officer, network security manager, and financial security manager) aware of the actual network state (e.g., risk and attack progress) and the impact it actually has on the business tasks, making clear the relationships that exist between the network level and the business level. The proposed solution is instantiated on the ACEA infrastructure, the Italian company that provides power and water purification services to cities in central Italy (millions of end users

    Evaluation of Open Source SIEM for Situation Awareness Platform in the Smart Grid Environment

    Get PDF
    Abstract-The smart grid as a large-scale system of systems has an exceptionally large surface exposed to cyber-attacks, including highly evolved and sophisticated threats such as Advanced Persistent Threats (APT) or Botnets. When addressing this situation the usual cyber security technologies are prerequisite, but not sufficient. The smart grid requires developing and deploying an extensive ICT infrastructure that supports significantly increased situational awareness and enables detailed and precise command and control. The paper presents one of the studies related to the development and deployment of the Situation Awareness Platform for the smart grid, namely the evaluation of open source Security Information and Event Management systems. These systems are the key components of the platform

    Data mining based cyber-attack detection

    Get PDF
    corecore