3,446 research outputs found

    The potential of additive manufacturing in the smart factory industrial 4.0: A review

    Get PDF
    Additive manufacturing (AM) or three-dimensional (3D) printing has introduced a novel production method in design, manufacturing, and distribution to end-users. This technology has provided great freedom in design for creating complex components, highly customizable products, and efficient waste minimization. The last industrial revolution, namely industry 4.0, employs the integration of smart manufacturing systems and developed information technologies. Accordingly, AM plays a principal role in industry 4.0 thanks to numerous benefits, such as time and material saving, rapid prototyping, high efficiency, and decentralized production methods. This review paper is to organize a comprehensive study on AM technology and present the latest achievements and industrial applications. Besides that, this paper investigates the sustainability dimensions of the AM process and the added values in economic, social, and environment sections. Finally, the paper concludes by pointing out the future trend of AM in technology, applications, and materials aspects that have the potential to come up with new ideas for the future of AM explorations

    ARMD Workshop on Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation

    Get PDF
    This report documents the goals, organization and outcomes of the NASA Aeronautics Research Mission Directorates (ARMD) Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation Workshop. The workshop began with a series of plenary presentations by leaders in the field of structures and materials, followed by concurrent symposia focused on forecasting the future of various technologies related to rapid manufacturing of metallic materials and polymeric matrix composites, referred to herein as composites. Shortly after the workshop, questionnaires were sent to key workshop participants from the aerospace industry with requests to rank the importance of a series of potential investment areas identified during the workshop. Outcomes from the workshop and subsequent questionnaires are being used as guidance for NASA investments in this important technology area

    Manufacturing High Entropy Alloys: Pathway to Industrial Competitiveness

    Full text link
    High entropy alloys (HEAs) provide a transformative opportunity to design materials that are custom tailored to the distinct needs of a given application, thereby shifting the paradigm from “apply the material you have” to “engineer the material you need.” HEAs will enable high-performance manufactured goods that are competitive in the international marketplace through extraordinary material properties and unique property combinations. HEAs deliver new choices to manufacturers to create alternatives to materials that are rare, hazardous, expensive, or subject to international restrictions or conflict. The potential benefits of HEAs span diverse fields and applications, and show promise to not only accelerate economic growth and domestic competitive advantage, but also address pressing societal challenges. These include solid state cooling, liquefied natural gas handling, nuclear degradation- resistant materials, corrosion-resistant heat exchangers, and efficiency gains from high temperature performance that advance national energy goals; high-performance aerospace materials and ultra- hardness ballistics that support national security; and strong, corrosion-resistant medical devices and advances in magnetic resonance imaging that are essential to national health priorities. Research advances are setting the stage to realize each of these vital areas. However, research advances made to-date to produce lab-scale prototypes do not lend themselves to manufacturing at scale. For Americans to fully benefit from HEAs, the emerging technologies must be translated into products manufactured at scale in the United States. However, manufacturers and HEA experts who are working to bridge this gap are encountering cross-cutting barriers in manufacturing processes, testing, data, and access to the necessary resources. Through strategic public- and private- sector research and investment, these barriers can be overcome. The United States has invested in both HEA research and advanced materials resources, such as material sample creation at the Ames Laboratory Materials Preparation Center, material characterization at Oak Ridge National Laboratory’s Neutron User Facilities, and modeling and analysis through the National Institute of Standards and Technology’s Material Genome Initiative. A vast array of research and expertise has been fostered at federal laboratories and universities, yielding promising alloys, manufacturing processes, and analysis methods.National Science Foundation, Grant No. 1552534https://deepblue.lib.umich.edu/bitstream/2027.42/146747/1/Manufacturing-HEAs.pdf-1Description of Manufacturing-HEAs.pdf : Main articl

    Development of forensic methods for the comparison of metal 3D printing illicit and counterfeit goods

    Get PDF
    Three-dimensional (3D) printing is the manufacturing of objects in a layer-by-layer technique, utilising Computer-Aided Design (CAD) software and a variety of engineering processes and materials. The recent advancements and increases in the application of 3D printing have been substantially attributed to the expiry of earlier patents, resulting in new devices and processes. Criminals and organised crime groups are continually seeking new methods for the illicit manufacturing of firearms, their components and counterfeit goods, and the recent advancements and cost reductions in 3D printing technology has provided them with the means. To date, there are no published forensic studies on the assessment of the engineering features of metal 3D printing, or the application and development of forensic techniques to compare and identify the source printer and generated materials in criminal investigations. This review seeks to address this by evaluating the manufacturing and engineering features of powder bed fusion-based 3D metal printing and generated materials, and how this might assist the forensic community to apply and develop chemical and physical methods of forensic analysis

    Technical, Economic and Societal Effects of Manufacturing 4.0

    Get PDF
    This open access book is among the first cross-disciplinary works about Manufacturing 4.0. It includes chapters about the technical, the economic, and the social aspects of this important phenomenon. Together the material presented allows the reader to develop a holistic picture of where the manufacturing industry and the parts of the society that depend on it may be going in the future. Manufacturing 4.0 is not only a technical change, nor is it a purely technically driven change, but it is a societal change that has the potential to disrupt the way societies are constructed both in the positive and in the negative. This book will be of interest to scholars researching manufacturing, technological innovation, innovation management and industry 4.0

    A review of Laser Powder Bed Fusion Additive Manufacturing of aluminium alloys: Microstructure and properties

    Get PDF
    Additive manufacturing (AM) of metallic alloys for structural and functional applications has attracted significant interest in the last two decades as it brings a step change in the philosophy of design and manufacturing. The ability to design and fabricate complex geometries not amenable to conventional manufacturing, and the potential to reduce component weight without compromising performance, is particularly attractive for aerospace and automotive applications. This has culminated in rapid progress in AM with Ti- and Ni-based alloys. In contrast, the development of AM with Al-alloys has been slow, despite their widespread adoption in industry owing to an excellent combination of low density and high strength-to-weight ratio. Research to date has focused on castable and weldable AlSiMg-based alloys (which are less desirable for demanding structural applications), as well as on the development of new AM-specific AlMgSc alloys (based on 5xxx series). However, high strength wrought Al-alloys have typically been unsuitable for AM due to their unfavourable microstructural characteristics under rapid directional solidification conditions. Nevertheless, recent research has shown that there is promise in overcoming the associated challenges. Herein, we present a review of the current status of AM with Al-alloys. We primarily focus on the microstructural characteristics, and on exploring how these influence mechanical properties. The current metallurgical understanding of microstructure and defect formation in Al-alloys during AM is discussed, along with recent promising research exploring various microstructural modification methodologies. Finally, the remaining challenges in the development of AM with high-strength Al-alloys are discussed

    Marshall Space Flight Center Research and Technology Report 2019

    Get PDF
    Today, our calling to explore is greater than ever before, and here at Marshall Space Flight Centerwe make human deep space exploration possible. A key goal for Artemis is demonstrating and perfecting capabilities on the Moon for technologies needed for humans to get to Mars. This years report features 10 of the Agencys 16 Technology Areas, and I am proud of Marshalls role in creating solutions for so many of these daunting technical challenges. Many of these projects will lead to sustainable in-space architecture for human space exploration that will allow us to travel to the Moon, on to Mars, and beyond. Others are developing new scientific instruments capable of providing an unprecedented glimpse into our universe. NASA has led the charge in space exploration for more than six decades, and through the Artemis program we will help build on our work in low Earth orbit and pave the way to the Moon and Mars. At Marshall, we leverage the skills and interest of the international community to conduct scientific research, develop and demonstrate technology, and train international crews to operate further from Earth for longer periods of time than ever before first at the lunar surface, then on to our next giant leap, human exploration of Mars. While each project in this report seeks to advance new technology and challenge conventions, it is important to recognize the diversity of activities and people supporting our mission. This report not only showcases the Centers capabilities and our partnerships, it also highlights the progress our people have achieved in the past year. These scientists, researchers and innovators are why Marshall and NASA will continue to be a leader in innovation, exploration, and discovery for years to come
    • …
    corecore