860 research outputs found

    Lightweight Mutual Authentication Protocol for Low Cost RFID Tags

    Full text link
    Radio Frequency Identification (RFID) technology one of the most promising technologies in the field of ubiquitous computing. Indeed, RFID technology may well replace barcode technology. Although it offers many advantages over other identification systems, there are also associated security risks that are not easy to be addressed. When designing a real lightweight authentication protocol for low cost RFID tags, a number of challenges arise due to the extremely limited computational, storage and communication abilities of Low-cost RFID tags. This paper proposes a real mutual authentication protocol for low cost RFID tags. The proposed protocol prevents passive attacks as active attacks are discounted when designing a protocol to meet the requirements of low cost RFID tags. However the implementation of the protocol meets the limited abilities of low cost RFID tags.Comment: 11 Pages, IJNS

    Enhancing the security of RCIA ultra-lightweight authentication protocol by using Random Number Generator (RNG) technique

    Get PDF
    This study is an attempt to enhance the security of Robust Confidentiality, Integrity, and Authentication (RCIA) ultra-lightweight authentication protocols.In the RCIA protocol, IDs value is sent between reader and tag as a constant value.This makes RCIA susceptible to traceability attack which lead to the privacy issue. In order to overcome this problem, Random Number Generator (RNG) technique based on Bitwise operations has been used in the tag side.The idea of this technique is to change the IDs of a tag on every query session so that it will not stay as a constant value.The implementation of Enhanced RCIA has been conducted by using a simulation.The simulation provided the ability to show that the operations of RCIA protocol as to compare with the enhanced RCIA.The outcome shows that the enhanced RCIA outperforms existing one in terms of privacy

    Trusted-HB: a low-cost version of HB+ secure against Man-in-The-Middle attacks

    Full text link
    Since the introduction at Crypto'05 by Juels and Weis of the protocol HB+, a lightweight protocol secure against active attacks but only in a detection based-model, many works have tried to enhance its security. We propose here a new approach to achieve resistance against Man-in-The-Middle attacks. Our requirements - in terms of extra communications and hardware - are surprisingly low.Comment: submitted to IEEE Transactions on Information Theor

    Enhancing the security of RCIA ultra-lightweight authentication protocol by using random number generator (RNG) technique

    Get PDF
    With the growing demand for low-cost Radio Frequency Identification (RFID) system, there is a necessity to design RFID ultra-lightweight authentication protocols to be compatible with the system and also resistant against possible attacks. However, the existing ultra-lightweight authentication protocols are susceptible to wide range of attacks. This study is an attempt to enhance the security of Robust Confidentiality, Integrity, and Authentication (RCIA) ultra-lightweight authentication protocols especially with regard to privacy issue. In the RCIA protocol, IDs value is sent between reader and tag as a constant value. The constant value will enable attacker to trace the location of the tag which violates the privacy users. In order to enhance the security of RCIA protocol, Random Number Generator (RNG) technique has been used. This technique relies on generating random numbers in the tag side, based on Bitwise operations. The idea of this technique is to change the IDs of a tag on every query session so that it will not stay as a constant value. The implementation of Enhanced RCIA has been conducted by using a simulation. The simulation provided the ability to show that the operations of RCIA protocol as to compare with the enhanced RCIA. The outcome shows that the enhanced RCIA outperforms existing one in terms of privacy

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios

    Ultra-lightweight Mutual Authentication Protocols: Weaknesses and Countermeasures

    Get PDF

    Pitfalls in Ultralightweight RFID Authentication Protocol

    Get PDF
    Radio frequency identification (RFID) is one of the most promising identification schemes in the field of pervasive systems. Non-line of sight capability makes RFID systems more protuberant than its contended systems. Since the RFID systems incorporate wireless medium, so there are some allied security threats and apprehensions from malicious adversaries. In order to make the system reliable and secure, numerous researchers have proposed ultralightweight mutual authentication protocols; which involve only simple bitwise logical operations (AND, XOR & OR etc.) to provide security. In this paper, we have analyzed the security vulnerabilities of state of the art ultralightweight RFID authentication protocol: RAPP. We have proposed three attacks (two DoS and one Desynchronization) in RAPP protocol and challenged its security claims. Ā Moreover, we have also highlighted some common pitfalls in ultralightweight authentication protocol designs. This will help as a sanity check, improve and longevity of ultralightweight authentication protocol designs

    KLEIN: A New Family of Lightweight Block Ciphers

    Get PDF
    Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has advantage in the software performance on legacy sensor platforms, while in the same time its hardware implementation can also be compact
    • ā€¦
    corecore