610 research outputs found

    Security Analysis of an Identity-Based Strongly Unforgeable Signature Scheme

    Get PDF
    Identity-based signature (IBS) is a specific type of public-key signature (PKS) where any identity string IDID can be used for the public key of a user. Although an IBS scheme can be constructed from any PKS scheme by using the certificate paradigm, it is still important to construct an efficient IBS scheme with short signature under the standard assumption without relying on random oracles. Recently, Kwon proposed an IBS scheme and claimed its strong unforgeability under the computational Diffie-Hellman (CDH) assumption. In this paper, we show that the security proof of Kwon is seriously flawed. To show the flaws, we first show that there exists a distinguisher that can distinguish the distribution of simulated signature from that of real signatures. Next, we also show that the simulator of Kwon\u27s security argument cannot extract the solution of the CDH assumption even if there exists an adversary that forges the signature. Therefore, the security of the Kwon\u27s IBS scheme is not related to the hardness of the CDH assumption

    Signcryption schemes with threshold unsigncryption, and applications

    Get PDF
    The final publication is available at link.springer.comThe goal of a signcryption scheme is to achieve the same functionalities as encryption and signature together, but in a more efficient way than encrypting and signing separately. To increase security and reliability in some applications, the unsigncryption phase can be distributed among a group of users, through a (t, n)-threshold process. In this work we consider this task of threshold unsigncryption, which has received very few attention from the cryptographic literature up to now (maybe surprisingly, due to its potential applications). First we describe in detail the security requirements that a scheme for such a task should satisfy: existential unforgeability and indistinguishability, under insider chosen message/ciphertext attacks, in a multi-user setting. Then we show that generic constructions of signcryption schemes (by combining encryption and signature schemes) do not offer this level of security in the scenario of threshold unsigncryption. For this reason, we propose two new protocols for threshold unsigncryption, which we prove to be secure, one in the random oracle model and one in the standard model. The two proposed schemes enjoy an additional property that can be very useful. Namely, the unsigncryption protocol can be divided in two phases: a first one where the authenticity of the ciphertext is verified, maybe by a single party; and a second one where the ciphertext is decrypted by a subset of t receivers, without using the identity of the sender. As a consequence, the schemes can be used in applications requiring some level of anonymity, such as electronic auctions.Peer ReviewedPostprint (author's final draft

    Efficient cryptographic primitives: Secure comparison, binary decomposition and proxy re-encryption

    Get PDF
    ”Data outsourcing becomes an essential paradigm for an organization to reduce operation costs on supporting and managing its IT infrastructure. When sensitive data are outsourced to a remote server, the data generally need to be encrypted before outsourcing. To preserve the confidentiality of the data, any computations performed by the server should only be on the encrypted data. In other words, the encrypted data should not be decrypted during any stage of the computation. This kind of task is commonly termed as query processing over encrypted data (QPED). One natural solution to solve the QPED problem is to utilize fully homomorphic encryption. However, fully homomorphic encryption is yet to be practical. The second solution is to adopt multi-server setting. However, the existing work is not efficient. Their implementations adopt costly primitives, such as secure comparison, binary decomposition among others, which reduce the efficiency of the whole protocols. Therefore, the improvement of these primitives results in high efficiency of the protocols. To have a well-defined scope, the following types of computations are considered: secure comparison (CMP), secure binary decomposition (SBD) and proxy re-encryption (PRE). We adopt the secret sharing scheme and paillier public key encryption as building blocks, and all computations can be done on the encrypted data by utilizing multiple servers. We analyze the security and the complexity of our proposed protocols, and their efficiencies are evaluated by comparing with the existing solutions.”--Abstract, page iii

    Type 2 Structure-Preserving Signature Schemes Revisited

    Get PDF
    Abstract. Abe, Groth, Ohkubo and Tibouchi recently presented structure-preserving signature schemes using Type 2 pairings. The schemes are claimed to enjoy the fastest signature verification. By properly accounting for subgroup membership testing of group elements in signatures, we show that the schemes are not as efficient as claimed. We presen

    A new revocable and re-delegable proxy signature and its application

    Get PDF
    With the popularity of cloud computing and mobile Apps, on-demand services such as on-line music or audio streaming and vehicle booking are widely available nowadays. In order to allow efficient delivery and management of the services, for large-scale on-demand systems, there is usually a hierarchy where the service provider can delegate its service to a top-tier (e.g., countrywide) proxy who can then further delegate the service to lower level (e.g., region-wide) proxies. Secure (re-)delegation and revocation are among the most crucial factors for such systems. In this paper, we investigate the practical solutions for achieving re-delegation and revocation utilizing proxy signature. Although proxy signature has been extensively studied in the literature, no previous solution can achieve both properties. To fill the gap, we introduce the notion of revocable and re-delegable proxy signature that supports efficient revocation and allows a proxy signer to re-delegate its signing right to other proxy signers without the interaction with the original signer. We define the formal security models for this new primitive and present an efficient scheme that can achieve all the security properties. We also present a secure on-line revocable and re-delegate vehicle ordering system (RRVOS) as one of the applications of our proposed scheme

    Black-Box Constructions of Signature Schemes in the Bounded Leakage Setting

    Get PDF
    To simplify the certificate management procedures, Shamir introduced the concept of identity-based cryptography (IBC). However, the key escrow problem is inherent in IBC. To get rid of it, Al-Riyami and Paterson introduced in 2003 the notion of certificateless cryptography (CLC). However, if a cryptosystem is not perfectly implemented, adversaries would be able to obtain part of the system\u27s secret state via side-channel attacks, and thus may break the system. This is not considered in the security model of traditional cryptographic primitives. Leakage-resilient cryptography was then proposed to prevent adversaries from doing so. There are fruitful works on leakage-resilient encryption schemes, while there are not many on signature schemes in the leakage setting. In this work, we review the folklore generic constructions of identity-based signature and certificateless signature, and show that if the underlying primitives are leakage-resilient, so are the resulting identity-based signature scheme and certificateless signature scheme. The leakage rate follows the minimum one of the underlying primitives. We also show some instantiations of these generic constructions
    • …
    corecore