33 research outputs found

    Constant-size dynamic k-times anonymous authentication

    Get PDF
    Dynamic k-times anonymous authentication (k-TAA) schemes allow members of a group to be authenticated anonymously by application providers for a bounded number of times, where application providers can independently and dynamically grant or revoke access right to members in their own group. In this paper, we construct a dynamic k-TAA scheme with space and time complexities of O(log(k)) and a variant, in which the authentication protocol only requires constant time and space complexities at the cost of O(k) -sized public key. We also describe some tradeoff issues between different system characteristics. We detail all the zero-knowledge proof-of-knowledge protocols involved and show that our construction is secure in the random oracle model under the q-strong Diffie-Hellman assumption and q-decisional Diffie-Hellman inversion assumption. We provide a proof-of-concept implementation, experiment on its performance, and show that our scheme is practical

    Group Signatures with Message-Dependent Opening: Formal Definitions and Constructions

    Get PDF
    This paper introduces a new capability for group signatures called message-dependent opening. It is intended to weaken the high trust placed on the opener; i.e., no anonymity against the opener is provided by an ordinary group signature scheme. In a group signature scheme with message-dependent opening (GS-MDO), in addition to the opener, we set up an admitter that is not able to extract any user’s identity but admits the opener to open signatures by specifying messages where signatures on the specified messages will be opened by the opener. The opener cannot extract the signer’s identity from any signature whose corresponding message is not specified by the admitter. This paper presents formal definitions of GS-MDO and proposes a generic construction of it from identity-based encryption and adaptive non-interactive zero-knowledge proofs. Moreover, we propose two specific constructions, one in the standard model and one in the random oracle model. Our scheme in the standard model is an instantiation of our generic construction but the message-dependent opening property is bounded. In contrast, our scheme in the random oracle model is not a direct instantiation of our generic construction but is optimized to increase efficiency and achieves the unbounded message-dependent opening property. Furthermore, we also demonstrate that GS-MDO implies identity-based encryption, thus implying that identity-based encryption is essential for designing GS-MDO schemes

    On Cryptographic Building Blocks and Transformations

    Get PDF
    Cryptographic building blocks play a central role in cryptography, e.g., encryption or digital signatures with their security notions. Further, cryptographic building blocks might be constructed modularly, i.e., emerge out of other cryptographic building blocks. Essentially, one cryptographically transforms the underlying block(s) and their (security) properties into the emerged block and its properties. This thesis considers cryptographic building blocks and new cryptographic transformations
    corecore