3,489 research outputs found

    On the Security of One Password Authenticated Key Exchange Protocol

    Get PDF
    In this paper the Security Evaluated Standardized Password Authenticated Key Exchange (SESPAKE) protocol is proposed (this protocol is approved in the standardization system of the Russian Federation) and its cryptographic properties are analyzed. The SESPAKE protocol includes a key agreement step and a key authentication step. We define new indistinguishability-based adversary model with a threat of false authentication that is an extension of the original indistinguishability-based model up to the case of protocols with authentication step without key diversification. We prove the protocol security under two types of threats: a classic threat of distinguishing a generated session key from a random string and a threat of false authentication. This protocol is the first password authenticated key exchange protocol (PAKE) protocol without key diversification for a full version of which a security proof has been obtained. The paper also contains a brief review of the known results dedicated to analysis of cryptographic properties of PAKE protocols

    Analysis of security protocols using finite-state machines

    Get PDF
    This paper demonstrates a comprehensive analysis method using formal methods such as finite-state machine. First, we describe the modified version of our new protocol and briefly explain the encrypt-then-authenticate mechanism, which is regarded as more a secure mechanism than the one used in our protocol. Then, we use a finite-state verification to study the behaviour of each machine created for each phase of the protocol and examine their behaviour s together. Modelling with finite-state machines shows that the modified protocol can function correctly and behave properly even with invalid input or time delay

    On Vulnerabilities of the Security Association in the IEEE 802.15.6 Standard

    Full text link
    Wireless Body Area Networks (WBAN) support a variety of real-time health monitoring and consumer electronics applications. The latest international standard for WBAN is the IEEE 802.15.6. The security association in this standard includes four elliptic curve-based key agreement protocols that are used for generating a master key. In this paper, we challenge the security of the IEEE 802.15.6 standard by showing vulnerabilities of those four protocols to several attacks. We perform a security analysis on the protocols, and show that they all have security problems, and are vulnerable to different attacks

    An Authentication Protocol for Future Sensor Networks

    Full text link
    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols.Comment: This article is accepted for the publication in "Sensors" journal. 29 pages, 15 figure
    • …
    corecore