2,455 research outputs found

    A security framework for networked RFID

    Full text link
    In the last decade RFID technology has become a major contender for managing large scale logistics operations and generating and distributing the massive amount of data involved in such operations. One of the main obstacles to the widespread deployment and adoption of RFID systems is the security issues inherent in them. This is compounded by a noticeable lack of literature on how to identify the vulnerabilities of a RFID system and then effectively identify and develop counter measures to combat the threats posed by those vulnerabilities. In this chapter, the authors develop a conceptual framework for analysing the threats, attacks, and security requirements pertaining to networked RFID systems. The vulnerabilities of, and the threats to, the system are identified using the threat model. The security framework itself consists of two main concepts: (1) the attack model, which identifies and classifies the possible attacks, and (2) the system model, which identifies the security requirements. The framework gives readers a method with which to analyse the threats any given system faces. Those threats can then be used to identify the attacks possible on that system and get a better understanding of those attacks. It also allows the reader to easily identify all the security requirements of that system and identify how those requirements can be met

    Know Your Enemy: Stealth Configuration-Information Gathering in SDN

    Full text link
    Software Defined Networking (SDN) is a network architecture that aims at providing high flexibility through the separation of the network logic from the forwarding functions. The industry has already widely adopted SDN and researchers thoroughly analyzed its vulnerabilities, proposing solutions to improve its security. However, we believe important security aspects of SDN are still left uninvestigated. In this paper, we raise the concern of the possibility for an attacker to obtain knowledge about an SDN network. In particular, we introduce a novel attack, named Know Your Enemy (KYE), by means of which an attacker can gather vital information about the configuration of the network. This information ranges from the configuration of security tools, such as attack detection thresholds for network scanning, to general network policies like QoS and network virtualization. Additionally, we show that an attacker can perform a KYE attack in a stealthy fashion, i.e., without the risk of being detected. We underline that the vulnerability exploited by the KYE attack is proper of SDN and is not present in legacy networks. To address the KYE attack, we also propose an active defense countermeasure based on network flows obfuscation, which considerably increases the complexity for a successful attack. Our solution offers provable security guarantees that can be tailored to the needs of the specific network under consideratio

    Towards Security and Privacy in Networked Medical Devices and Electronic Healthcare Systems

    Get PDF
    E-health is a growing eld which utilizes wireless sensor networks to enable access to effective and efficient healthcare services and provide patient monitoring to enable early detection and treatment of health conditions. Due to the proliferation of e-health systems, security and privacy have become critical issues in preventing data falsification, unauthorized access to the system, or eavesdropping on sensitive health data. Furthermore, due to the intrinsic limitations of many wireless medical devices, including low power and limited computational resources, security and device performance can be difficult to balance. Therefore, many current networked medical devices operate without basic security services such as authentication, authorization, and encryption. In this work, we survey recent work on e-health security, including biometric approaches, proximity-based approaches, key management techniques, audit mechanisms, anomaly detection, external device methods, and lightweight encryption and key management protocols. We also survey the state-of-the art in e-health privacy, including techniques such as obfuscation, secret sharing, distributed data mining, authentication, access control, blockchain, anonymization, and cryptography. We then propose a comprehensive system model for e-health applications with consideration of battery capacity and computational ability of medical devices. A case study is presented to show that the proposed system model can support heterogeneous medical devices with varying power and resource constraints. The case study demonstrates that it is possible to signicantly reduce the overhead for security on power-constrained devices based on the proposed system model

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table
    • …
    corecore