878 research outputs found

    Security analysis of a blockchain-based protocol for the certification of academic credentials

    Full text link
    We consider a blockchain-based protocol for the certification of academic credentials named Blockcerts, which is currently used worldwide for validating digital certificates of competence compliant with the Open Badges standard. We study the certification steps that are performed by the Blockcerts protocol to validate a certificate, and find that they are vulnerable to a certain type of impersonation attacks. More in detail, authentication of the issuing institution is performed by retrieving an unauthenticated issuer profile online, and comparing some data reported there with those included in the issued certificate. We show that, by fabricating a fake issuer profile and generating a suitably altered certificate, an attacker is able to impersonate a legitimate issuer and can produce certificates that cannot be distinguished from originals by the Blockcerts validation procedure. We also propose some possible countermeasures against an attack of this type, which require the use of a classic public key infrastructure or a decentralized identity system integrated with the Blockcerts protocol.Comment: 12 pages, 14 figure

    Blockchain in Education

    Get PDF
    This report introduces the fundamental principles of the Blockchain focusing on its potential for the education sector. It explains how this technology may both disrupt institutional norms and empower learners. It proposes eight scenarios for the application of the Blockchain in an education context, based on the current state of technology development and deployment.JRC.B.4-Human Capital and Employmen

    A Privacy-Preserving and Transparent Certification System for Digital Credentials

    Get PDF
    A certification system is responsible for issuing digital credentials, which attest claims about a subject, e.g., an academic diploma. Such credentials are valuable for individuals and society, and widespread adoption requires a trusted certification system. Trust can be gained by being transparent when issuing and verifying digital credentials. However, there is a fundamental tradeoff between privacy and transparency. For instance, admitting a student to an academic program must preserve the student’s privacy, i.e., the student’s grades must not be revealed to unauthorized parties. At the same time, other applicants may demand transparency to ensure fairness in the admission process. Thus, building a certification system with the right balance between privacy and transparency is challenging. This paper proposes a novel design for a certification system that provides sufficient transparency and preserves privacy through selective disclosure of claims such that authorized parties can verify them. Moreover, unauthorized parties can also verify the correctness of the certification process without compromising privacy. We achieve this using an incremental Merkle tree of cryptographic commitments to users' credentials. The commitments are added to the tree based on verifying zero-knowledge issuance proofs. Users store credentials off-chain and can prove the ownership and authenticity of credentials without revealing their commitments. Further, our approach enables users to prove statements about the credential’s claims in zero-knowledge. Our design offers a cost-efficient solution, reducing the amount of linkable on-chain data by up to 79% per credential compared to prior work, while maintaining transparency.publishedVersio

    Identity and Privacy Governance

    Get PDF

    Identity and Privacy Governance

    Get PDF

    Identity and Privacy Governance

    Get PDF

    Identity and Privacy Governance

    Get PDF

    Identity and Privacy Governance

    Get PDF

    Identity and Privacy Governance

    Get PDF

    Resource Efficient Authentication and Session Key Establishment Procedure for Low-Resource IoT Devices

    Get PDF
    open access journalThe Internet of Things (IoT) can includes many resource-constrained devices, with most usually needing to securely communicate with their network managers, which are more resource-rich devices in the IoT network. We propose a resource-efficient security scheme that includes authentication of devices with their network managers, authentication between devices on different networks, and an attack-resilient key establishment procedure. Using automated validation with internet security protocols and applications tool-set, we analyse several attack scenarios to determine the security soundness of the proposed solution, and then we evaluate its performance analytically and experimentally. The performance analysis shows that the proposed solution occupies little memory and consumes low energy during the authentication and key generation processes respectively. Moreover, it protects the network from well-known attacks (man-in-the-middle attacks, replay attacks, impersonation attacks, key compromission attacks and denial of service attacks)
    • …
    corecore