681 research outputs found

    Unidimensional continuous-variable quantum key distribution

    Full text link
    We propose the continuous-variable quantum key distribution protocol based on the Gaussian modulation of a single quadrature of the coherent states of light, which is aimed to provide simplified implementation compared to the symmetrically modulated Gaussian coherent-state protocols. The protocol waives the necessity in phase quadrature modulation and the corresponding channel transmittance estimation. The security of the protocol against collective attacks in a generally phase-sensitive Gaussian channels is analyzed and is shown achievable upon certain conditions. Robustness of the protocol to channel imperfections is compared to that of the symmetrical coherent-state protocol. The simplified unidimensional protocol is shown possible at a reasonable quantitative cost in terms of key rate and of tolerable channel excess noise.Comment: 7 pages, 5 figures, close to the published versio

    Trusted Noise in Continuous-Variable Quantum Key Distribution: a Threat and a Defense

    Full text link
    We address the role of the phase-insensitive trusted preparation and detection noise in the security of a continuous-variable quantum key distribution, considering the Gaussian protocols on the basis of coherent and squeezed states and studying them in the conditions of Gaussian lossy and noisy channels. The influence of such a noise on the security of Gaussian quantum cryptography can be crucial, even despite the fact that a noise is trusted, due to a strongly nonlinear behavior of the quantum entropies involved in the security analysis. We recapitulate the known effect of the preparation noise in both direct and reverse-reconciliation protocols, as well as the detection noise in the reverse-reconciliation scenario. As a new result, we show the negative role of the trusted detection noise in the direct-reconciliation scheme. We also describe the role of the trusted preparation or detection noise added at the reference side of the protocols in improving the robustness of the protocols to the channel noise, confirming the positive effect for the coherent-state reverse-reconciliation protocol. Finally, we address the combined effect of trusted noise added both in the source and the detector.Comment: 25 pages, 9 figure

    Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations

    Full text link
    The ability to distribute secret keys between two parties with information-theoretic security, that is, regardless of the capacities of a malevolent eavesdropper, is one of the most celebrated results in the field of quantum information processing and communication. Indeed, quantum key distribution illustrates the power of encoding information on the quantum properties of light and has far reaching implications in high-security applications. Today, quantum key distribution systems operate in real-world conditions and are commercially available. As with most quantum information protocols, quantum key distribution was first designed for qubits, the individual quanta of information. However, the use of quantum continuous variables for this task presents important advantages with respect to qubit based protocols, in particular from a practical point of view, since it allows for simple implementations that require only standard telecommunication technology. In this review article, we describe the principle of continuous-variable quantum key distribution, focusing in particular on protocols based on coherent states. We discuss the security of these protocols and report on the state-of-the-art in experimental implementations, including the issue of side-channel attacks. We conclude with promising perspectives in this research field.Comment: 21 pages, 2 figures, 1 tabl

    General entropy-like uncertainty relations in finite dimensions

    Full text link
    We revisit entropic formulations of the uncertainty principle for an arbitrary pair of positive operator-valued measures (POVM) AA and BB, acting on finite dimensional Hilbert space. Salicr\'u generalized (h,ϕ)(h,\phi)-entropies, including R\'enyi and Tsallis ones among others, are used as uncertainty measures associated with the distribution probabilities corresponding to the outcomes of the observables. We obtain a nontrivial lower bound for the sum of generalized entropies for any pair of entropic functionals, which is valid for both pure and mixed states. The bound depends on the overlap triplet (cA,cB,cA,B)(c_A,c_B,c_{A,B}) with cAc_A (resp. cBc_B) being the overlap between the elements of the POVM AA (resp. BB) and cA,Bc_{A,B} the overlap between the pair of POVM. Our approach is inspired by that of de Vicente and S\'anchez-Ruiz [Phys.\ Rev.\ A \textbf{77}, 042110 (2008)] and consists in a minimization of the entropy sum subject to the Landau-Pollak inequality that links the maximum probabilities of both observables. We solve the constrained optimization problem in a geometrical way and furthermore, when dealing with R\'enyi or Tsallis entropic formulations of the uncertainty principle, we overcome the H\"older conjugacy constraint imposed on the entropic indices by the Riesz-Thorin theorem. In the case of nondegenerate observables, we show that for given cA,B>12c_{A,B} > \frac{1}{\sqrt2}, the bound obtained is optimal; and that, for R\'enyi entropies, our bound improves Deutsch one, but Maassen-Uffink bound prevails when cA,B≤12c_{A,B} \leq\frac12. Finally, we illustrate by comparing our bound with known previous results in particular cases of R\'enyi and Tsallis entropies

    Quantum Information Protocols with Gaussian States of Light

    Get PDF

    Theoretical and Practical Advances in Computer-based Educational Measurement

    Get PDF
    This open access book presents a large number of innovations in the world of operational testing. It brings together different but related areas and provides insight in their possibilities, their advantages and drawbacks. The book not only addresses improvements in the quality of educational measurement, innovations in (inter)national large scale assessments, but also several advances in psychometrics and improvements in computerized adaptive testing, and it also offers examples on the impact of new technology in assessment. Due to its nature, the book will appeal to a broad audience within the educational measurement community. It contributes to both theoretical knowledge and also pays attention to practical implementation of innovations in testing technology

    Enhanced Uplink Quantum Communication with Satellites via Downlink Channels

    Full text link
    In developing the global Quantum Internet, quantum communication with low-Earth-orbit satellites will play a pivotal role. Such communication will need to be two way: effective not only in the satellite-to-ground (downlink) channel but also in the ground-to-satellite channel (uplink). Given that losses on this latter channel are significantly larger relative to the former, techniques that can exploit the superior downlink to enhance quantum communication in the uplink should be explored. In this work we do just that - exploring how continuous variable entanglement in the form of two-mode squeezed vacuum (TMSV) states can be used to significantly enhance the fidelity of ground-to-satellite quantum-state transfer relative to direct uplink-transfer. More specifically, through detailed phase-screen simulations of beam evolution through turbulent atmospheres in both the downlink and uplink channels, we demonstrate how a TMSV teleportation channel created by the satellite can be used to dramatically improve the fidelity of uplink coherent-state transfer relative to direct transfer. We then show how this, in turn, leads to the uplink-transmission of a higher alphabet of coherent states. Additionally, we show how non-Gaussian operations acting on the received component of the TMSV state at the ground station can lead to even further enhancement. Since TMSV states can be readily produced in situ on a satellite platform and form a reliable teleportation channel for most quantum states, our work suggests future satellites forming part of the emerging Quantum Internet should be designed with uplink-communication via TMSV teleportation in mind
    • …
    corecore