200 research outputs found

    Signcryption schemes with threshold unsigncryption, and applications

    Get PDF
    The final publication is available at link.springer.comThe goal of a signcryption scheme is to achieve the same functionalities as encryption and signature together, but in a more efficient way than encrypting and signing separately. To increase security and reliability in some applications, the unsigncryption phase can be distributed among a group of users, through a (t, n)-threshold process. In this work we consider this task of threshold unsigncryption, which has received very few attention from the cryptographic literature up to now (maybe surprisingly, due to its potential applications). First we describe in detail the security requirements that a scheme for such a task should satisfy: existential unforgeability and indistinguishability, under insider chosen message/ciphertext attacks, in a multi-user setting. Then we show that generic constructions of signcryption schemes (by combining encryption and signature schemes) do not offer this level of security in the scenario of threshold unsigncryption. For this reason, we propose two new protocols for threshold unsigncryption, which we prove to be secure, one in the random oracle model and one in the standard model. The two proposed schemes enjoy an additional property that can be very useful. Namely, the unsigncryption protocol can be divided in two phases: a first one where the authenticity of the ciphertext is verified, maybe by a single party; and a second one where the ciphertext is decrypted by a subset of t receivers, without using the identity of the sender. As a consequence, the schemes can be used in applications requiring some level of anonymity, such as electronic auctions.Peer ReviewedPostprint (author's final draft

    Development of Time-Stamped Signcryption Scheme and its Application in E-Cash System

    Get PDF
    A signcryption scheme combining public key encryptions and digital signatures in one logical step can simultaneously satisfy the security requirements of confidentiality, integrity, authenticity and non-repudiation and with a cost significantly lower than that required by the traditional "signature followed by encryption" approach. This thesis presents a new generic concept of time-stamped signcryption scheme with designated verifiability. Here an authenticated time-stamp is associated with the signcrypted text which can only be verifiable by a specific person, known as the designated verifier. The time-stamp is provided by a trusted third party, namely, Time Stamping System (TSS). The scheme is proved to be secure, as, no one, not even the signcrypter or TSS can produce a valid signcrypted text on behalf of them. We analyzed the security of the proposed scheme and found that it can withstand some active attacks. This scheme is resistant against both inside and outside attacks. The security of our scheme is based upon the hardness of solving Computational Diffie Hellman Problem (CDH), Discrete Logarithm Problem (DLP) and Integer Factorization Problem (IFP). The proposed scheme is suitable in scenarios such as, on-line patent submission, on-line lottery, e-cash, e-bidding and other e-commerce applications. Also we propose an e-cash system based on our proposed time-stamped signcryption scheme which confirms the notion of e-cash securities like anonymity of the spender, unforgeablity of the digital coin, prevention of double spending

    Contributions to secret sharing and other distributed cryptosystems

    Get PDF
    The present thesis deals with primitives related to the eld of distributed cryptography. First, we study signcryption schemes, which provide at the same time the functionalities of encryption and signature, where the unsigncryption operation is distributed. We consider this primitive from a theoretical point of view and set a security framework for it. Then, we present two signcryption schemes with threshold unsigncryption, with di erent properties. Furthermore, we use their authenticity property to apply them in the development of a di erent primitive: digital signatures with distributed veri cation. The second block of the thesis deals with the primitive of multi-secret sharing schemes. After stating some e ciency limitations of multi-secret sharing schemes in an information-theoretic scenario, we present several multi-secret sharing schemes with provable computational security. Finally, we use the results in multi-secret sharing schemes to generalize the traditional framework of distributed cryptography (with a single policy of authorized subsets) into a multipolicy setting, and we present both a multi-policy distributed decryption scheme and a multi-policy distributed signature scheme. Additionally, we give a short outlook on how to apply the presented multi-secret sharing schemes in the design of other multi-policy cryptosystems, like the signcryption schemes considered in this thesis. For all the schemes proposed throughout the thesis, we follow the same formal structure. After de ning the protocols of the primitive and the corresponding security model, we propose the new scheme and formally prove its security, by showing a reduction to some computationally hard mathematical problem.Avui en dia les persones estan implicades cada dia més en diferents activitats digitals tant en la seva vida professional com en el seu temps lliure. Molts articles de paper, com diners i tiquets, estan sent reemplaçats més i més per objectes digitals. La criptografia juga un paper crucial en aquesta transformació, perquè proporciona seguretat en la comunicació entre els diferents participants que utilitzen un canal digital. Depenent de la situació específica, alguns requisits de seguretat en la comunicació poden incloure privacitat (o confidencialitat), autenticitat, integritat o no-repudi. En algunes situacions, repartir l'operació secreta entre un grup de participants fa el procés més segur i fiable que quan la informació secreta està centralitzada en un únic participant; la criptografia distribuïda és l’àrea de la criptografia que estudia aquestes situacions. Aquesta tesi tracta de primitives relacionades amb el camp de la criptografia distribuïda. Primer, estudiem esquemes “signcryption”, que ofereixen a la vegada les funcionalitats de xifrat i signatura, on l'operació de “unsigncryption” està distribuïda. Considerem aquesta primitiva des d’un punt de vista teòric i establim un marc de seguretat per ella. Llavors, presentem dos esquemes “signcryption” amb operació de “unsigncryption” determinada per una estructura llindar, cada un amb diferents propietats. A més, utilitzem la seva propietat d’autenticitat per desenvolupar una nova primitiva: signatures digitals amb verificació distribuïda. El segon bloc de la tesi tracta la primitiva dels esquemes de compartició de multi-secrets. Després de demostrar algunes limitacions en l’eficiència dels esquemes de compartició de multi-secrets en un escenari de teoria de la informació, presentem diversos esquemes de compartició de multi-secrets amb seguretat computacional demostrable. Finalment, utilitzem els resultats obtinguts en els esquemes de compartició de multi-secrets per generalitzar el paradigma tradicional de la criptografia distribuïda (amb una única política de subconjunts autoritzats) a un marc multi-política, i presentem un esquema de desxifrat distribuït amb multi-política i un esquema de signatura distribuïda amb multi-política. A més, donem indicacions de com es poden aplicar els nostres esquemes de compartició de multi-secrets en el disseny d’altres criptosistemes amb multi-política, com per exemple els esquemes “signcryption” considerats en aquesta tesi. Per tots els esquemes proposats al llarg d’aquesta tesi, seguim la mateixa estructura formal. Després de definir els protocols de la primitiva primitius i el model de seguretat corresponent, proposem el nou esquema i demostrem formalment la seva seguretat, mitjançant una reducció a algun problema matemàtic computacionalment difícil

    Identity based cryptography from bilinear pairings

    Get PDF
    This report contains an overview of two related areas of research in cryptography which have been prolific in significant advances in recent years. The first of these areas is pairing based cryptography. Bilinear pairings over elliptic curves were initially used as formal mathematical tools and later as cryptanalysis tools that rendered supersingular curves insecure. In recent years, bilinear pairings have been used to construct many cryptographic schemes. The second area covered by this report is identity based cryptography. Digital certificates are a fundamental part of public key cryptography, as one needs a secure way of associating an agent’s identity with a random (meaningless) public key. In identity based cryptography, public keys can be arbitrary bit strings, including readable representations of one’s identity.Fundação para a Ci~Encia e Tecnologia - SFRH/BPD/20528/2004

    A heterogeneous signcryption scheme for smart grid with trusted multi-ciphertext equality test

    Get PDF
    Energy utilization rates have been largely improved thanks to the wide application of smart grids, thereby realizing the reliable, economic and efficient operation of the grids. However, such an application is also accompanied by many security issues. In response to the many problems within existing security schemes, such as not supporting the communication between heterogeneous cryptosystems, low security levels and a low data retrieval efficiency, a heterogeneous signcryption (HSC) scheme that supports a trusted multi-ciphertext equality test (MET) is proposed. The adoption of the HSC helps to identify secure communications from identity-based cryptosystems to certificateless cryptosystem, eliminates the certificate management problems in the traditional public key cryptography scheme, and ensures the confidentiality and authentication of power data. The introduction of the MET technology can avoid the high cost of equality test calculations after grouping ciphertexts in pairs. Using blockchain and smart contract technologies ensure the credibility of test results and eliminates the reliance on trusted cloud servers. Under the random oracle model, on the basis of the bilinear Diffie-Hellman, the computational Diffie-Hellman and the q-strong Diffie-Hellman problems, this paper proves that the scheme proposed herein meets the requirements of indistinguishability and one-way security under adaptive choice ciphertext attacks, and the unforgeability under the adaptive choice message attack. From the findings of the analysis, it has been shown that the proposed scheme satisfies more security attributes and requires lower computational overhead compared to similar schemes

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    An Elliptic Curve-based Signcryption Scheme with Forward Secrecy

    Full text link
    An elliptic curve-based signcryption scheme is introduced in this paper that effectively combines the functionalities of digital signature and encryption, and decreases the computational costs and communication overheads in comparison with the traditional signature-then-encryption schemes. It simultaneously provides the attributes of message confidentiality, authentication, integrity, unforgeability, non-repudiation, public verifiability, and forward secrecy of message confidentiality. Since it is based on elliptic curves and can use any fast and secure symmetric algorithm for encrypting messages, it has great advantages to be used for security establishments in store-and-forward applications and when dealing with resource-constrained devices.Comment: 13 Pages, 5 Figures, 2 Table
    corecore