41,823 research outputs found

    A means to an industrialisation end? Demand side management in Nigeria

    Get PDF
    Electricity is essential for economic development and industrialisation processes. Balancing demand and supply is a recurrent problem in the Nigerian electricity market. The aim of this work is to assess the technical and economic potential of Demand Side Management (DSM) in Nigeria given different future levels of industrialisation. The paper places industrialisation at the centrefold of the appraisal of DSM potential in Nigeria. It does so by designing industrialisation scenarios and consequently deriving different DSM penetration levels using a cost-optimisation model. Findings show that under the high industrialisation scenario by the year 2050 DSM could bring about 7 billion USD in cumulative savings thanks to deferred investment in new generation and full deployment of standby assets along with interruptible programmes for larger industrial users. The paper concludes by providing policy recommendations regarding financial mechanisms to increase DSM deployment in Nigeria. The focus on DSM serves to shift the policy debate on electricity in Nigeria from a static state versus market narrative on supply to an engagement with the agency and influence on industrial end-users

    Challenges and opportunities of the China – Gulf Cooperation Council Free Trade Agreement

    Get PDF
    The free trade agreement between China and the Gulf Cooperation Council (“the GCC”) currently under negotiation is due to become China’s first comprehensive trade and investment agreement with a supranational customs union. The article explores the challenges and opportunities of the proposed China-GCC Free Trade Agreement. It proposes tailor-made recommendations according to the specific interests of both parties

    A Distributed Demand-Side Management Framework for the Smart Grid

    Get PDF
    This paper proposes a fully distributed Demand-Side Management system for Smart Grid infrastructures, especially tailored to reduce the peak demand of residential users. In particular, we use a dynamic pricing strategy, where energy tariffs are function of the overall power demand of customers. We consider two practical cases: (1) a fully distributed approach, where each appliance decides autonomously its own scheduling, and (2) a hybrid approach, where each user must schedule all his appliances. We analyze numerically these two approaches, showing that they are characterized practically by the same performance level in all the considered grid scenarios. We model the proposed system using a non-cooperative game theoretical approach, and demonstrate that our game is a generalized ordinal potential one under general conditions. Furthermore, we propose a simple yet effective best response strategy that is proved to converge in a few steps to a pure Nash Equilibrium, thus demonstrating the robustness of the power scheduling plan obtained without any central coordination of the operator or the customers. Numerical results, obtained using real load profiles and appliance models, show that the system-wide peak absorption achieved in a completely distributed fashion can be reduced up to 55%, thus decreasing the capital expenditure (CAPEX) necessary to meet the growing energy demand

    Decentralized Demand Side Management with Rooftop PV in Residential Distribution Network

    Full text link
    In the past extensive researches have been conducted on demand side management (DSM) program which aims at reducing peak loads and saving electricity cost. In this paper, we propose a framework to study decentralized household demand side management in a residential distribution network which consists of multiple smart homes with schedulable electrical appliances and some rooftop photovoltaic generation units. Each smart home makes individual appliance scheduling to optimize the electric energy cost according to the day-ahead forecast of electricity prices and its willingness for convenience sacrifice. Using the developed simulation model, we examine the performance of decentralized household DSM and study their impacts on the distribution network operation and renewable integration, in terms of utilization efficiency of rooftop PV generation, overall voltage deviation, real power loss, and possible reverse power flows.Comment: 5 pages, 7 figures, ISGT 2018 conferenc

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft
    corecore