443 research outputs found

    Towards Seamless and Secure Mobile Authentication

    Get PDF
    abstract: With the rise of mobile technology, the personal lives and sensitive information of everyday citizens are carried about without a thought to the risks involved. Despite this high possibility of harm, many fail to use simple security to protect themselves because they feel the benefits of securing their devices do not outweigh the cost to usability. The main issue is that beyond initial authentication, sessions are maintained using optional timeout mechanisms where a session will end if a user is inactive for a period of time. This interruption-based form of continuous authentication requires constant user intervention leading to frustration, which discourages its use. No solution currently exists that provides an implementation beyond the insecure and low usability of simple timeout and re-authentication. This work identifies the flaws of current mobile authentication techniques and provides a new solution that is not limiting to the user, has a system for secure, active continuous authentication, and increases the usability and security over current methods.Dissertation/ThesisMasters Thesis Computer Science 201

    Understanding IoT Security Through the Data Crystal Ball: Where We Are Now and Where We Are Going To Be

    Get PDF
    Inspired by the boom of the consumer IoT market, many device manufacturers, new start-up companies and technology behemoths have jumped into the space. Indeed, in a span of less than 5 years, we have experienced the manifestation of an array of solutions for the smart home, smart cities and even smart cars. Unfortunately, the exciting utility and rapid marketization of IoTs, come at the expense of privacy and security. Online and industry reports, and academic work have revealed a number of attacks on IoT systems, resulting in privacy leakage, property loss and even large-scale availability problems on some of the most influential Internet services (e.g. Netflix, Twitter). To mitigate such threats, a few new solutions have been proposed. However, it is still less clear what are the impacts they can have on the IoT ecosystem. In this work, we aim to perform a comprehensive study on reported attacks and defenses in the realm of IoTs aiming to find out what we know, where the current studies fall short and how to move forward. To this end, we first build a toolkit that searches through massive amount of online data using semantic analysis to identify over 3000 IoT-related articles (papers, reports and news). Further, by clustering such collected data using machine learning technologies, we are able to compare academic views with the findings from industry and other sources, in an attempt to understand the gaps between them, the trend of the IoT security risks and new problems that need further attention. We systemize this process, by proposing a taxonomy for the IoT ecosystem and organizing IoT security into five problem areas. We use this taxonomy as a beacon to assess each IoT work across a number of properties we define. Our assessment reveals that despite the acknowledged and growing concerns on IoT from both industry and academia, relevant security and privacy problems are far from solved. We discuss how each proposed solution can be applied to a problem area and highlight their strengths, assumptions and constraints. We stress the need for a security framework for IoT vendors and discuss the trend of shifting security liability to external or centralized entities. We also identify open research problems and provide suggestions towards a secure IoT ecosystem

    Android Security, Pitfalls, Lessons Learned and BYOD

    Get PDF
    Over the last two years Android became the most popular mobile operating system. But Android is also targeted by an over-proportional share of malware. In this paper we systematize the knowledge about the Android security mechanisms and formulate how the pitfalls can be avoided when building a mobile operating system. As smartphones enter the corporate domain, a new scheme called bring your own device (BYOD) became popular. One solution is to logically partition the device such that personal and business information are isolated from one another. We systematize the solutions for partitioning in Android

    Integrated Framework for Data Quality and Security Evaluation on Mobile Devices

    Get PDF
    Data quality (DQ) is an important concept that is used in the design and employment of information, data management, decision making, and engineering systems with multiple applications already available for solving specific problems. Unfortunately, conventional approaches to DQ evaluation commonly do not pay enough attention or even ignore the security and privacy of the evaluated data. In this research, we develop a framework for the DQ evaluation of the sensor originated data acquired from smartphones, that incorporates security and privacy aspects into the DQ evaluation pipeline. The framework provides support for selecting the DQ metrics and implementing their calculus by integrating diverse sensor data quality and security metrics. The framework employs a knowledge graph to facilitate its adaptation in new applications development and enables knowledge accumulation. Privacy aspects evaluation is demonstrated by the detection of novel and sophisticated attacks on data privacy on the example of colluded applications attack recognition. We develop multiple calculi for DQ and security evaluation, such as a hierarchical fuzzy rules expert system, neural networks, and an algebraic function. Case studies that demonstrate the framework\u27s performance in solving real-life tasks are presented, and the achieved results are analyzed. These case studies confirm the framework\u27s capability of performing comprehensive DQ evaluations. The framework development resulted in producing multiple products, and tools such as datasets and Android OS applications. The datasets include the knowledge base of sensors embedded in modern mobile devices and their quality analysis, technological signals recordings of smartphones during the normal usage, and attacks on users\u27 privacy. These datasets are made available for public use and can be used for future research in the field of data quality and security. We also released under an open-source license a set of Android OS tools that can be used for data quality and security evaluation

    Enhancing Usability, Security, and Performance in Mobile Computing

    Get PDF
    We have witnessed the prevalence of smart devices in every aspect of human life. However, the ever-growing smart devices present significant challenges in terms of usability, security, and performance. First, we need to design new interfaces to improve the device usability which has been neglected during the rapid shift from hand-held mobile devices to wearables. Second, we need to protect smart devices with abundant private data against unauthorized users. Last, new applications with compute-intensive tasks demand the integration of emerging mobile backend infrastructure. This dissertation focuses on addressing these challenges. First, we present GlassGesture, a system that improves the usability of Google Glass through a head gesture user interface with gesture recognition and authentication. We accelerate the recognition by employing a novel similarity search scheme, and improve the authentication performance by applying new features of head movements in an ensemble learning method. as a result, GlassGesture achieves 96% gesture recognition accuracy. Furthermore, GlassGesture accepts authorized users in nearly 92% of trials, and rejects attackers in nearly 99% of trials. Next, we investigate the authentication between a smartphone and a paired smartwatch. We design and implement WearLock, a system that utilizes one\u27s smartwatch to unlock one\u27s smartphone via acoustic tones. We build an acoustic modem with sub-channel selection and adaptive modulation, which generates modulated acoustic signals to maximize the unlocking success rate against ambient noise. We leverage the motion similarities of the devices to eliminate unnecessary unlocking. We also offload heavy computation tasks from the smartwatch to the smartphone to shorten response time and save energy. The acoustic modem achieves a low bit error rate (BER) of 8%. Compared to traditional manual personal identification numbers (PINs) entry, WearLock not only automates the unlocking but also speeds it up by at least 18%. Last, we consider low-latency video analytics on mobile devices, leveraging emerging mobile backend infrastructure. We design and implement LAVEA, a system which offloads computation from mobile clients to edge nodes, to accomplish tasks with intensive computation at places closer to users in a timely manner. We formulate an optimization problem for offloading task selection and prioritize offloading requests received at the edge node to minimize the response time. We design and compare various task placement schemes for inter-edge collaboration to further improve the overall response time. Our results show that the client-edge configuration has a speedup ranging from 1.3x to 4x against running solely by the client and 1.2x to 1.7x against the client-cloud configuration

    Author's method of securing the screen of the mobile device.

    Get PDF
    With the development of mobile device technology, the need to protect these devices from unauthorized access is increasing. Currently, there are common methods of unlocking devices whose operation consists in reading the pattern or the password entered by the user. The article presents the creation of an original method of screen protection of a mobile device and its comparison with commonly used screen locking methods
    • …
    corecore