183 research outputs found

    Mobile Authentication with NFC enabled Smartphones

    Get PDF
    Smartphones are becoming increasingly more deployed and as such new possibilities for utilizing the smartphones many capabilities for public and private use are arising. This project will investigate the possibility of using smartphones as a platform for authentication and access control, using near field communication (NFC). To achieve the necessary security for authentication and access control purposes, cryptographic concepts such as public keys, challenge-response and digital signatures are used. To focus the investigation a case study is performed based on the authentication and access control needs of an educational institutions student ID. To gain a more practical understanding of the challenges mobile authentication encounters, a prototype has successfully been developed on the basis of the investigation. The case study performed in this project argues that NFC as a standalone technology is not yet mature to support the advanced communication required by this case. However, combining NFC with other communication technologies such as Bluetooth has proven to be effective. As a result, a general evaluation has been performed on several aspects of the prototype, such as cost-effectiveness, usability, performance and security to evaluate the viability of mobile authentication

    Post-Quantum Secure Remote Password Protocol from RLWE Problem

    Get PDF
    Secure Remote Password (SRP) protocol is an augmented Password-based Authenticated Key Exchange (PAKE) protocol based on discrete logarithm problem (DLP) with various attractive security features. Compared with basic PAKE protocols, SRP does not require server to store user\u27s password and user does not send password to server to authenticate. These features are desirable for secure client-server applications. SRP has gained extensive real-world deployment, including Apple iCloud, 1Password etc. However, with the advent of quantum computer and Shor\u27s algorithm, classic DLP-based public key cryptography algorithms are no longer secure, including SRP. Motivated by importance of SRP and threat from quantum attacks, we propose a RLWE-based SRP protocol (RLWE-SRP) which inherit advantages from SRP and elegant design from RLWE key exchange. We also present parameter choice and efficient portable C++ implementation of RLWE-SRP. Implementation of our 209-bit secure RLWE-SRP is more than 3x faster than 112-bit secure original SRP protocol, 5.5x faster than 80-bit secure J-PAKE and 14x faster than two 184-bit secure RLWE-based PAKE protocols with more desired properties

    The Prom Problem: Fair and Privacy-Enhanced Matchmaking with Identity Linked Wishes

    Get PDF
    In the Prom Problem (TPP), Alice wishes to attend a school dance with Bob and needs a risk-free, privacy preserving way to find out whether Bob shares that same wish. If not, no one should know that she inquired about it, not even Bob. TPP represents a special class of matchmaking challenges, augmenting the properties of privacy-enhanced matchmaking, further requiring fairness and support for identity linked wishes (ILW) – wishes involving specific identities that are only valid if all involved parties have those same wishes. The Horne-Nair (HN) protocol was proposed as a solution to TPP along with a sample pseudo-code embodiment leveraging an untrusted matchmaker. Neither identities nor pseudo-identities are included in any messages or stored in the matchmaker’s database. Privacy relevant data stay within user control. A security analysis and proof-of-concept implementation validated the approach, fairness was quantified, and a feasibility analysis demonstrated practicality in real-world networks and systems, thereby bounding risk prior to incurring the full costs of development. The SecretMatch™ Prom app leverages one embodiment of the patented HN protocol to achieve privacy-enhanced and fair matchmaking with ILW. The endeavor led to practical lessons learned and recommendations for privacy engineering in an era of rapidly evolving privacy legislation. Next steps include design of SecretMatch™ apps for contexts like voting negotiations in legislative bodies and executive recruiting. The roadmap toward a quantum resistant SecretMatch™ began with design of a Hybrid Post-Quantum Horne-Nair (HPQHN) protocol. Future directions include enhancements to HPQHN, a fully Post Quantum HN protocol, and more

    Secure Chaotic Maps-based Group Key Agreement Scheme with Privacy Preserving

    Get PDF
    Abstract Nowadays chaos theory related to cryptography has been addressed widely, so there is an intuitive connection between group key agreement and chaotic maps. Such a connector may lead to a novel way to construct authenticated and efficient group key agreement protocols. Many chaotic maps based two-party/three-party password authenticated key agreement (2PAKA/3PAKA) schemes have been proposed. However, to the best of our knowledge, no chaotic maps based group (N-party) key agreement protocol without using a timestamp and password has been proposed yet. In this paper, we propose the first chaotic maps-based group authentication key agreement protocol. The proposed protocol is based on chaotic maps to create a kind of signcryption method to transmit authenticated information and make the calculated consumption and communicating round restrict to an acceptable bound. At the same time our proposed protocol can achieve members' revocation or join easily, which not only refrains from consuming modular exponential computing and scalar multiplication on an elliptic curve, but is also robust to resist various attacks and achieves perfect forward secrecy with privacy preserving

    The Cryptographic Security of the German Electronic Identity Card

    Get PDF
    In November 2010, the German government started to issue the new electronic identity card (eID) to its citizens. Besides its original utilization as a ’visual’ identification document, the eID card can be used by the cardholder to prove one’s identity at border control and to enhance security of authentication processes over the Internet, with the eID card serving as a token to reliably transmit personal data to service providers or terminals, respectively. To this end, the German Federal Office for Information Security (BSI) proposed several cryptographic protocols now deployed on the eID card. The Password Authenticated Connection Establishment (PACE) protocol secures the wireless communication between the eID card and the user’s local card reader, based on a cryptographically weak password like the PIN chosen by the card owner. Subsequently, the Extended Access Control (EAC) protocol is executed by the chip and the service provider to mutually authenticate and agree on a shared secret session key. This key is then used in the secure channel protocol, called Secure Messaging (SM). Finally, an optional protocol, called Restricted Identification (RI), provides a method to use pseudonyms such that they can be linked by individual service providers, but not across different service providers (even not by malicious ones). This thesis consists of two parts. First, we present the above protocols and provide a rigorous analysis on their security from a cryptographic point of view. We show that the Germen eID card provides reasonable security for authentication and exchange of sensitive information allaying concerns regarding its usage. In the second part of this thesis, we introduce two possible modifications to enhance the security of these protocols even further. Namely, we show how to (a) add to PACE an additional efficient chip authentication step, and (b) augment RI to allow also for signatures under pseudonyms

    Using secure coprocessors to enforce network access policies in enterprise and ad hoc networks

    Get PDF
    Nowadays, network security is critically important. Enterprises rely on networks to improvetheir business. However, network security breaches may cause them loss of millions of dollars.Ad hoc networks, which enable computers to communicate wirelessly without the need forinfrastructure support, have been attracting more and more interests. However, they cannotbe deployed effectively due to security concerns.Studies have shown that the major network security threat is insiders (malicious orcompromised nodes). Enterprises have traditionally employed network security solutions(e.g., firewalls, intrusion detection systems, anti-virus software) and network access controltechnologies (e.g., 802.1x, IPsec/IKE) to protect their networks. However, these approachesdo not prevent malicious or compromised nodes from accessing the network. Many attacksagainst ad hoc networks, including routing, forwarding, and leader-election attacks, requiremalicious nodes joining the attacked network too.This dissertation presents a novel solution to protect both enterprise and ad hoc networksby addressing the above problem. It is a hardware-based solution that protects a networkthrough the attesting of a node's configuration before authorizing the node's access to thenetwork. Attestation is the unforgeable disclosure of a node's configuration to another node,signed by a secure coprocessor known as a Trusted Platform Module (TPM).This dissertation makes following contributions. First, several techniques at operatingsystem level (i.e., TCB prelogging, secure association root tripping, and sealing-free attestation confinement) are developed to support attestation and policy enforcement. Second, two secure attestation protocols at network level (i.e., Bound Keyed Attestation (BKA) andBatched Bound Keyed Attestation (BBKA)) are designed to overcome the risk of a man-inthe-middle (MITM) attack. Third, the above techniques are applied in enterprise networks todifferent network access control technologies to enhance enterprise network security. Fourth,AdHocSec, a novel network security solution for ad hoc networks, is proposed and evaluated. AdHocSec inserts a security layer between the network and data link layer of the networkstack. Several algorithms are designed to facilitate node's attestation in ad hoc networks,including distributed attestation (DA), and attested merger (AM) algorithm

    A multifaceted formal analysis of end-to-end encrypted email protocols and cryptographic authentication enhancements

    Get PDF
    Largely owing to cryptography, modern messaging tools (e.g., Signal) have reached a considerable degree of sophistication, balancing advanced security features with high usability. This has not been the case for email, which however, remains the most pervasive and interoperable form of digital communication. As sensitive information (e.g., identification documents, bank statements, or the message in the email itself) is frequently exchanged by this means, protecting the privacy of email communications is a justified concern which has been emphasized in the last years. A great deal of effort has gone into the development of tools and techniques for providing email communications with privacy and security, requirements that were not originally considered. Yet, drawbacks across several dimensions hinder the development of a global solution that would strengthen security while maintaining the standard features that we expect from email clients. In this thesis, we present improvements to security in email communications. Relying on formal methods and cryptography, we design and assess security protocols and analysis techniques, and propose enhancements to implemented approaches for end-to-end secure email communication. In the first part, we propose a methodical process relying on code reverse engineering, which we use to abstract the specifications of two end-to-end security protocols from a secure email solution (called pEp); then, we apply symbolic verification techniques to analyze such protocols with respect to privacy and authentication properties. We also introduce a novel formal framework that enables a system's security analysis aimed at detecting flaws caused by possible discrepancies between the user's and the system's assessment of security. Security protocols, along with user perceptions and interaction traces, are modeled as transition systems; socio-technical security properties are defined as formulas in computation tree logic (CTL), which can then be verified by model checking. Finally, we propose a protocol that aims at securing a password-based authentication system designed to detect the leakage of a password database, from a code-corruption attack. In the second part, the insights gained by the analysis in Part I allow us to propose both, theoretical and practical solutions for improving security and usability aspects, primarily of email communication, but from which secure messaging solutions can benefit too. The first enhancement concerns the use of password-authenticated key exchange (PAKE) protocols for entity authentication in peer-to-peer decentralized settings, as a replacement for out-of-band channels; this brings provable security to the so far empirical process, and enables the implementation of further security and usability properties (e.g., forward secrecy, secure secret retrieval). A second idea refers to the protection of weak passwords at rest and in transit, for which we propose a scheme based on the use of a one-time-password; furthermore, we consider potential approaches for improving this scheme. The hereby presented research was conducted as part of an industrial partnership between SnT/University of Luxembourg and pEp Security S.A

    On all-or-nothing transforms and password-authenticated key exchange protocols

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 142-152).by Victor Boyko.Ph.D
    • …
    corecore