33,506 research outputs found

    BlackWatch:increasing attack awareness within web applications

    Get PDF
    Web applications are relied upon by many for the services they provide. It is essential that applications implement appropriate security measures to prevent security incidents. Currently, web applications focus resources towards the preventative side of security. Whilst prevention is an essential part of the security process, developers must also implement a level of attack awareness into their web applications. Being able to detect when an attack is occurring provides applications with the ability to execute responses against malicious users in an attempt to slow down or deter their attacks. This research seeks to improve web application security by identifying malicious behaviour from within the context of web applications using our tool BlackWatch. The tool is a Python-based application which analyses suspicious events occurring within client web applications, with the objective of identifying malicious patterns of behaviour. This approach avoids issues typically encountered with traditional web application firewalls. Based on the results from a preliminary study, BlackWatch was effective at detecting attacks from both authenticated, and unauthenticated users. Furthermore, user tests with developers indicated BlackWatch was user friendly, and was easy to integrate into existing applications. Future work seeks to develop the BlackWatch solution further for public release

    Mayall:a framework for desktop JavaScript auditing and post-exploitation analysis

    Get PDF
    Writing desktop applications in JavaScript offers developers the opportunity to write cross-platform applications with cutting edge capabilities. However in doing so, they are potentially submitting their code to a number of unsanctioned modifications from malicious actors. Electron is one such JavaScript application framework which facilitates this multi-platform out-the-box paradigm and is based upon the Node.js JavaScript runtime --- an increasingly popular server-side technology. In bringing this technology to the client-side environment, previously unrealized risks are exposed to users due to the powerful system programming interface that Node.js exposes. In a concerted effort to highlight previously unexposed risks in these rapidly expanding frameworks, this paper presents the Mayall Framework, an extensible toolkit aimed at JavaScript security auditing and post-exploitation analysis. The paper also exposes fifteen highly popular Electron applications and demonstrates that two thirds of applications were found to be using known vulnerable elements with high CVSS scores. Moreover, this paper discloses a wide-reaching and overlooked vulnerability within the Electron Framework which is a direct byproduct of shipping the runtime unaltered with each application, allowing malicious actors to modify source code and inject covert malware inside verified and signed applications without restriction. Finally, a number of injection vectors are explored and appropriate remediations are proposed

    Reverse Proxy Framework using Sanitization Technique for Intrusion Prevention in Database

    Full text link
    With the increasing importance of the internet in our day to day life, data security in web application has become very crucial. Ever increasing on line and real time transaction services have led to manifold rise in the problems associated with the database security. Attacker uses illegal and unauthorized approaches to hijack the confidential information like username, password and other vital details. Hence the real time transaction requires security against web based attacks. SQL injection and cross site scripting attack are the most common application layer attack. The SQL injection attacker pass SQL statement through a web applications input fields, URL or hidden parameters and get access to the database or update it. The attacker take a benefit from user provided data in such a way that the users input is handled as a SQL code. Using this vulnerability an attacker can execute SQL commands directly on the database. SQL injection attacks are most serious threats which take users input and integrate it into SQL query. Reverse Proxy is a technique which is used to sanitize the users inputs that may transform into a database attack. In this technique a data redirector program redirects the users input to the proxy server before it is sent to the application server. At the proxy server, data cleaning algorithm is triggered using a sanitizing application. In this framework we include detection and sanitization of the tainted information being sent to the database and innovate a new prototype.Comment: 9 pages, 6 figures, 3 tables; CIIT 2013 International Conference, Mumba

    Using HTML5 to Prevent Detection of Drive-by-Download Web Malware

    Get PDF
    The web is experiencing an explosive growth in the last years. New technologies are introduced at a very fast-pace with the aim of narrowing the gap between web-based applications and traditional desktop applications. The results are web applications that look and feel almost like desktop applications while retaining the advantages of being originated from the web. However, these advancements come at a price. The same technologies used to build responsive, pleasant and fully-featured web applications, can also be used to write web malware able to escape detection systems. In this article we present new obfuscation techniques, based on some of the features of the upcoming HTML5 standard, which can be used to deceive malware detection systems. The proposed techniques have been experimented on a reference set of obfuscated malware. Our results show that the malware rewritten using our obfuscation techniques go undetected while being analyzed by a large number of detection systems. The same detection systems were able to correctly identify the same malware in its original unobfuscated form. We also provide some hints about how the existing malware detection systems can be modified in order to cope with these new techniques.Comment: This is the pre-peer reviewed version of the article: \emph{Using HTML5 to Prevent Detection of Drive-by-Download Web Malware}, which has been published in final form at \url{http://dx.doi.org/10.1002/sec.1077}. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archivin
    • …
    corecore