45 research outputs found

    Offloading cryptographic services to the SIM card in smartphones

    Get PDF
    Smartphones have achieved ubiquitous presence in people’s everyday life as communication, entertainment and work tools. Touch screens and a variety of sensors offer a rich experience and make applications increasingly diverse, complex and resource demanding. Despite their continuous evolution and enhancements, mobile devices are still limited in terms of battery life, processing power, storage capacity and network bandwidth. Computation offloading stands out among the efforts to extend device capabilities and face the growing gap between demand and availability of resources. As most popular technologies, mobile devices are attractive targets for malicious at- tackers. They usually store sensitive private data of their owners and are increasingly used for security sensitive activities such as online banking or mobile payments. While computation offloading introduces new challenges to the protection of those assets, it is very uncommon to take security and privacy into account as the main optimization objectives of this technique. Mobile OS security relies heavily on cryptography. Available hardware and software cryptographic providers are usually designed to resist software attacks. This kind of protection is not enough when physical control over the device is lost. Secure elements, on the other hand, include a set of protections that make them physically tamper-resistant devices. This work proposes a computation offloading technique that prioritizes enhancing security capabilities in mobile phones by offloading cryptographic operations to the SIM card, the only universally present secure element in those devices. Our contributions include an architecture for this technique, a proof-of-concept prototype developed under Android OS and the results of a performance evaluation that was conducted to study its execution times and battery consumption. Despite some limitations, our approach proves to be a valid alternative to enhance security on any smartphone.Los smartphones están omnipresentes en la vida cotidiana de las personas como herramientas de comunicación, entretenimiento y trabajo. Las pantallas táctiles y una variedad de sensores ofrecen una experiencia superior y hacen que las aplicaciones sean cada vez más diversas, complejas y demanden más recursos. A pesar de su continua evolución y mejoras, los dispositivos móviles aún están limitados en duración de batería, poder de procesamiento, capacidad de almacenamiento y ancho de banda de red. Computation offloading se destaca entre los esfuerzos para ampliar las capacidades del dispositivo y combatir la creciente brecha entre demanda y disponibilidad de recursos. Como toda tecnología popular, los smartphones son blancos atractivos para atacantes maliciosos. Generalmente almacenan datos privados y se utilizan cada vez más para actividades sensibles como banca en línea o pagos móviles. Si bien computation offloading presenta nuevos desafíos al proteger esos activos, es muy poco común tomar seguridad y privacidad como los principales objetivos de optimización de dicha técnica. La seguridad del SO móvil depende fuertemente de la criptografía. Los servicios criptográficos por hardware y software disponibles suelen estar diseñados para resistir ataques de software, protección insuficiente cuando se pierde el control físico sobre el dispositivo. Los elementos seguros, en cambio, incluyen un conjunto de protecciones que los hacen físicamente resistentes a la manipulación. Este trabajo propone una técnica de computation offloading que prioriza mejorar las capacidades de seguridad de los teléfonos móviles descargando operaciones criptográficas a la SIM, único elemento seguro universalmente presente en los mismos. Nuestras contribuciones incluyen una arquitectura para esta técnica, un prototipo de prueba de concepto desarrollado bajo Android y los resultados de una evaluación de desempeño que estudia tiempos de ejecución y consumo de batería. A pesar de algunas limitaciones, nuestro enfoque demuestra ser una alternativa válida para mejorar la seguridad en cualquier smartphone

    Enhancing Confidentiality and Privacy Preservation in e-Health to Enhanced Security

    Get PDF
    Electronic health (e-health) system use is growing, which has improved healthcare services significantly but has created questions about the privacy and security of sensitive medical data. This research suggests a novel strategy to overcome these difficulties and strengthen the security of e-health systems while maintaining the privacy and confidentiality of patient data by utilising machine learning techniques. The security layers of e-health systems are strengthened by the comprehensive framework we propose in this paper, which incorporates cutting-edge machine learning algorithms. The suggested framework includes data encryption, access control, and anomaly detection as its three main elements. First, to prevent unauthorised access during transmission and storage, patient data is secured using cutting-edge encryption technologies. Second, to make sure that only authorised staff can access sensitive medical records, access control mechanisms are strengthened using machine learning models that examine user behaviour patterns. This research's inclusion of machine learning-based anomaly detection is its most inventive feature. The technology may identify variations from typical data access and usage patterns, thereby quickly spotting potential security breaches or unauthorised activity, by training models on past e-health data. This proactive strategy improves the system's capacity to successfully address new threats. Extensive experiments were carried out employing a broad dataset made up of real-world e-health scenarios to verify the efficacy of the suggested approach. The findings showed a marked improvement in the protection of confidentiality and privacy, along with a considerable decline in security breaches and unauthorised access events

    Secure Sensor Prototype Using Hardware Security Modules and Trusted Execution Environments in a Blockchain Application: Wine Logistic Use Case

    Get PDF
    The security of Industrial Internet of Things (IIoT) systems is a challenge that needs to be addressed immediately, as the increasing use of new communication paradigms and the abundant use of sensors opens up new opportunities to compromise these types of systems. In this sense, technologies such as Trusted Execution Environments (TEEs) and Hardware Security Modules (HSMs) become crucial for adding new layers of security to IIoT systems, especially to edge nodes that incorporate sensors and perform continuous measurements. These technologies, coupled with new communication paradigms such as Blockchain, offer a high reliability, robustness and good interoperability between them. This paper proposes the design of a secure sensor incorporating the above mentioned technologies—HSMs and a TEE—in a hardware device based on a dual-core architecture. Through this combination of technologies, one of the cores collects the data extracted by the sensors and implements the security mechanisms to guarantee the integrity of these data, while the remaining core is responsible for sending these data through the appropriate communication protocol. This proposed approach fits into the Blockchain networks, which act as an Oracle. Finally, to illustrate the application of this concept, a use case applied to wine logistics is described, where this secure sensor is integrated into a Blockchain that collects data from the storage and transport of barrels, and a performance evaluation of the implemented prototype is providedEuropean Union’s Horizon Europe research and innovation program through the funding project “Cognitive edge-cloud with serverless computing” (EDGELESS) under grant agreement number 101092950FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades under Project B-TIC-588-UGR2

    Security Aspects of Mobile Based E Wallet

    Get PDF
    An Electronic-wallet(e-wallet) is an electronic application that enables online e-commerce transactions like purchasing goods, paying utility bills, transferring money, booking flight etc. with a financial gadget (credit card/digital currency) using smart phones or computers. Electronic wallet is a very young concept that has taken on consumer psyche rapidly. Post Demonetization resulted in sudden surge in the customer base of e wallet companies. In the current scenario, it is easy for individual to download an e wallet app to make their e-payments conveniently. Since the transactions are done through mobile, it is preferred by most of the people for their online and offline cash transactions. It is gaining the attention due to its unique advantageous features. This paper tries answer for certain queries related to operational procedure of e wallet, kinds of e wallet and concluded with the security issues of e wallet

    DOT-M: A Dual Offline Transaction Scheme of Central Bank Digital Currency for Trusted Mobile Devices

    Get PDF
    In recent years, many major economies have paid close attention to central bank digital currency (CBDC). As an optional attribute of CBDC, dual offline transaction is considered to have great practical value under the circumstances for payment without network connection. However, there is no public report or paper on how to securely design or implement the dual offline transaction function specifically for CBDC. In this paper, we propose DOT-M, a practical dual offline transaction scheme designed for the mobile device user as either a payer or a payee. Precisely, adopting secure element (SE) and trusted execution environment (TEE), the architecture of trusted mobile device is constructed to protect security-sensitive keys and execution of the transaction protocol. According to the trusted architecture, the data structure for offline transaction is designed as well. On this basis, we describe the core procedures of DOT-M in detail, including registration, account synchronization, dual offline transaction, and online data updating. We also enumerate the exceptional situations that may occur during the dual offline transaction, and give specific handling methods for each situation. Moreover, six security properties of the scheme are analyzed under realistic assumptions. A prototype system is implemented and finally tested with possible parameters. The security analysis and experimental results indicate that our scheme could meet the practical requirement of CBDC offline transaction for mobile users from both aspects of security and efficiency

    Improving trust in cloud, enterprise, and mobile computing platforms

    Get PDF
    Trust plays a fundamental role in the adoption of technology by society. Potential consumers tend to avoid a particular technology whenever they feel suspicious about its ability to cope with their security demands. Such a loss of trust could occur in important computing platforms, namely cloud, enterprise, and mobile platforms. In this thesis, we aim to improve trust in these platforms by (i) enhancing their security mechanisms, and (ii) giving their users guarantees that these mechanisms are in place. To realize both these goals, we propose several novel systems. For cloud platforms, we present Excalibur, a system that enables building trusted cloud services. Such services give cloud customers the ability to process data privately in the cloud, and to attest that the respective data protection mechanisms are deployed. Attestation is made possible by the use of trusted computing hardware placed on the cloud nodes. For enterprise platforms, we propose an OS security model—the broker security model—aimed at providing information security against a negligent or malicious system administrator while letting him retain most of the flexibility to manage the OS. We demonstrate the effectiveness of this model by building BrokULOS, a proof-of-concept instantiation of this model for Linux. For mobile platforms, we present the Trusted Language Runtime (TLR), a software system for hosting mobile apps with stringent security needs (e.g., e-wallet). The TLR leverages ARM TrustZone technology to protect mobile apps from OS security breaches.Für die gesellschaftliche Akzeptanz von Technologie spielt Vertrauen eine entscheidende Rolle. Wichtige Rechnerplattformen erfüllen diesbezüglich die Anforderungen ihrer Nutzer jedoch nicht zufriedenstellend. Dies trifft insbesondere auf Cloud-, Unternehmens- und Mobilplattformen zu. In dieser Arbeit setzen wir uns zum Ziel, das Vertrauen in diese Plattformen zu stärken, indem wir (1) ihre Sicherheitsmechanismen verbessern sowie (2) garantieren, dass diese Sicherheitsmechanismen aktiv sind. Zu diesem Zweck schlagen wir mehrere neuartige Systeme vor. Für Cloud-Plattformen präsentieren wir Excalibur, welches das Erstellen von vertrauenswürdigen Cloud-Diensten ermöglicht. Diese Cloud-Dienste erlauben es den Benutzern, ihre Daten in der Cloud vertraulich zu verarbeiten und sich darüber hinaus den Einsatz entsprechender Schutzvorkehrungen bescheinigen zu lassen. Eine solche Attestierung geschieht mit Hilfe von Trusted Computing Hardware auf den Cloud-Servern. Für Unternehmensplattformen stellen wir ein Sicherheitsmodell auf Betriebssystemebene vor—das Broker Security Model. Es zielt darauf ab, Informationssicherheit trotz fahrlässigem oder böswilligem Systemadministrator zu gewährleisten, ohne diesen bei seinen Administrationsaufgaben stark einzuschränken. Wir demonstrieren die Leistungsfähigkeit dieses Modells mit BrokULOS, einer Prototypimplementierung für Linux. Für Mobilplattformen stellen wir die Trusted Language Runtime (TLR) vor, ein Softwaresystem zum Hosting von mobilen Anwendungen mit strikten Sicherheitsanforderungen (z.B. elektronische Bezahlfunktionen). TLR nutzt die ARM TrustZone-Technologie um mobile Anwendungen vor Sicherheitslücken im Betriebssystem selbst zu schützen

    TrustZone based attestation in secure runtime verification for embedded systems

    Get PDF
    Dissertação de mestrado integrado em Engenharia InformáticaARM TrustZone é um “Ambiente de Execução Confiável” disponibilizado em processadores da ARM, que equipam grande parte dos sistemas embebidos. Este mecanismo permite assegurar que componentes críticos de uma aplicação executem num ambiente que garante a confidencialidade dos dados e integridade do código, mesmo que componentes maliciosos estejam instalados no mesmo dispositivo. Neste projecto pretende-se tirar partido do TrustZone no contexto de uma framework segura de monitorização em tempo real de sistemas embebidos. Especificamente, pretende-se recorrer a components como o ARM Trusted Firmware, responsável pelo processo de secure boot em sistemas ARM, para desenvolver um mecanismo de atestação que providencie garantias de computação segura a entidades remotas.ARM TrustZone is a security extension present on ARM processors that enables the development of hardware based Trusted Execution Environments (TEEs). This mechanism allows the critical components of an application to execute in an environment that guarantees data confidentiality and code integrity, even when a malicious agent is installed on the device. This projects aims to harness TrustZone in the context of a secure runtime verification framework for embedded devices. Specifically, it aims to harness existing components, namely ARM Trusted Firmware, responsible for the secure boot process of ARM devices, to implement an attestation mechanism that provides proof of secure computation to remote parties.This work has been partially supported by the Portuguese Foundation for Science and Technology (FCT), project REASSURE (PTDC/EEI-COM/28550/2017), co-financed by the European Regional Development Fund (FEDER), through the North Regional Operational Program (NORTE 2020)

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks
    corecore