36,877 research outputs found

    Challenges in Cybersecurity and Privacy - the European Research Landscape

    Get PDF
    Cybersecurity and Privacy issues are becoming an important barrier for a trusted and dependable global digital society development. Cyber-criminals are continuously shifting their cyber-attacks specially against cyber-physical systems and IoT, since they present additional vulnerabilities due to their constrained capabilities, their unattended nature and the usage of potential untrustworthiness components. Likewise, identity-theft, fraud, personal data leakages, and other related cyber-crimes are continuously evolving, causing important damages and privacy problems for European citizens in both virtual and physical scenarios. In this context, new holistic approaches, methodologies, techniques and tools are needed to cope with those issues, and mitigate cyberattacks, by employing novel cyber-situational awareness frameworks, risk analysis and modeling, threat intelligent systems, cyber-threat information sharing methods, advanced big-data analysis techniques as well as exploiting the benefits from latest technologies such as SDN/NFV and Cloud systems. In addition, novel privacy-preserving techniques, and crypto-privacy mechanisms, identity and eID management systems, trust services, and recommendations are needed to protect citizens’ privacy while keeping usability levels. The European Commission is addressing the challenge through different means, including the Horizon 2020 Research and Innovation program, thereby financing innovative projects that can cope with the increasing cyberthreat landscape. This book introduces several cybersecurity and privacy research challenges and how they are being addressed in the scope of 15 European research projects. Each chapter is dedicated to a different funded European Research project, which aims to cope with digital security and privacy aspects, risks, threats and cybersecurity issues from a different perspective. Each chapter includes the project’s overviews and objectives, the particular challenges they are covering, research achievements on security and privacy, as well as the techniques, outcomes, and evaluations accomplished in the scope of the EU project. The book is the result of a collaborative effort among relative ongoing European Research projects in the field of privacy and security as well as related cybersecurity fields, and it is intended to explain how these projects meet the main cybersecurity and privacy challenges faced in Europe. Namely, the EU projects analyzed in the book are: ANASTACIA, SAINT, YAKSHA, FORTIKA, CYBECO, SISSDEN, CIPSEC, CS-AWARE. RED-Alert, Truessec.eu. ARIES, LIGHTest, CREDENTIAL, FutureTrust, LEPS. Challenges in Cybersecurity and Privacy - the European Research Landscape is ideal for personnel in computer/communication industries as well as academic staff and master/research students in computer science and communications networks interested in learning about cyber-security and privacy aspects

    Challenges in Cybersecurity and Privacy - the European Research Landscape

    Get PDF
    Cybersecurity and Privacy issues are becoming an important barrier for a trusted and dependable global digital society development. Cyber-criminals are continuously shifting their cyber-attacks specially against cyber-physical systems and IoT, since they present additional vulnerabilities due to their constrained capabilities, their unattended nature and the usage of potential untrustworthiness components. Likewise, identity-theft, fraud, personal data leakages, and other related cyber-crimes are continuously evolving, causing important damages and privacy problems for European citizens in both virtual and physical scenarios. In this context, new holistic approaches, methodologies, techniques and tools are needed to cope with those issues, and mitigate cyberattacks, by employing novel cyber-situational awareness frameworks, risk analysis and modeling, threat intelligent systems, cyber-threat information sharing methods, advanced big-data analysis techniques as well as exploiting the benefits from latest technologies such as SDN/NFV and Cloud systems. In addition, novel privacy-preserving techniques, and crypto-privacy mechanisms, identity and eID management systems, trust services, and recommendations are needed to protect citizens’ privacy while keeping usability levels. The European Commission is addressing the challenge through different means, including the Horizon 2020 Research and Innovation program, thereby financing innovative projects that can cope with the increasing cyberthreat landscape. This book introduces several cybersecurity and privacy research challenges and how they are being addressed in the scope of 15 European research projects. Each chapter is dedicated to a different funded European Research project, which aims to cope with digital security and privacy aspects, risks, threats and cybersecurity issues from a different perspective. Each chapter includes the project’s overviews and objectives, the particular challenges they are covering, research achievements on security and privacy, as well as the techniques, outcomes, and evaluations accomplished in the scope of the EU project. The book is the result of a collaborative effort among relative ongoing European Research projects in the field of privacy and security as well as related cybersecurity fields, and it is intended to explain how these projects meet the main cybersecurity and privacy challenges faced in Europe. Namely, the EU projects analyzed in the book are: ANASTACIA, SAINT, YAKSHA, FORTIKA, CYBECO, SISSDEN, CIPSEC, CS-AWARE. RED-Alert, Truessec.eu. ARIES, LIGHTest, CREDENTIAL, FutureTrust, LEPS. Challenges in Cybersecurity and Privacy - the European Research Landscape is ideal for personnel in computer/communication industries as well as academic staff and master/research students in computer science and communications networks interested in learning about cyber-security and privacy aspects

    Digital Trust - Trusted Computing and Beyond A Position Paper

    Get PDF
    Along with the invention of computers and interconnected networks, physical societal notions like security, trust, and privacy entered the digital environment. The concept of digital environments begins with the trust (established in the real world) in the organisation/individual that manages the digital resources. This concept evolved to deal with the rapid growth of the Internet, where it became impractical for entities to have prior offline (real world) trust. The evolution of digital trust took diverse approaches and now trust is defined and understood differently across heterogeneous domains. This paper looks at digital trust from the point of view of security and examines how valid trust approaches from other domains are now making their way into secure computing. The paper also revisits and analyses the Trusted Platform Module (TPM) along with associated technologies and their relevance in the changing landscape. We especially focus on the domains of cloud computing, mobile computing and cyber-physical systems. In addition, the paper also explores our proposals that are competing with and extending the traditional functionality of TPM specifications

    AI Security Threats against Pervasive Robotic Systems: A Course for Next Generation Cybersecurity Workforce

    Full text link
    Robotics, automation, and related Artificial Intelligence (AI) systems have become pervasive bringing in concerns related to security, safety, accuracy, and trust. With growing dependency on physical robots that work in close proximity to humans, the security of these systems is becoming increasingly important to prevent cyber-attacks that could lead to privacy invasion, critical operations sabotage, and bodily harm. The current shortfall of professionals who can defend such systems demands development and integration of such a curriculum. This course description includes details about seven self-contained and adaptive modules on "AI security threats against pervasive robotic systems". Topics include: 1) Introduction, examples of attacks, and motivation; 2) - Robotic AI attack surfaces and penetration testing; 3) - Attack patterns and security strategies for input sensors; 4) - Training attacks and associated security strategies; 5) - Inference attacks and associated security strategies; 6) - Actuator attacks and associated security strategies; and 7) - Ethics of AI, robotics, and cybersecurity

    Charlie and the CryptoFactory: Towards Secure and Trusted Manufacturing Environments

    Get PDF
    The modernisation that stems from Industry 4.0 started populating the manufacturing sector with networked devices, complex sensors, and a significant proportion of physical actuation components. However, new capabilities in networked cyber-physical systems demand more complex infrastructure and algorithms and often lead to new security flaws and operational risks that increase the attack surface area exponentially. The interconnected nature of Industry 4.0-driven operations and the pace of digital transformation mean that cyber-attacks can have far more extensive effects than ever before. Based on that, the core ideas of this paper are driven by the observation that cyber security is one of the key enablers of Industry 4.0. Having this in mind, we propose CryptoFactory – a forward looking design of a layered-based architecture that can be used as a starting point for building secure and privacy-preserving smart factories. CryptoFactory aims to change the security outlook in smart manufacturing by discussing a set of fundamental requirements and functionality that modern factories should support in order to be resistant to both internal and external attacks. To this end, CryptoFactory first focuses on how to build trust relationships between the hardware devices in the factory. Then, we look on how to use several cryptographic approaches to allow IoT devices to securely collect, store and share their data while we also touch upon the emerging topic of secure and privacy-preserving communication and collaboration between manufacturing environments and value chains. Finally, we look into the problem of how to perform privacy-preserving analytics by leveraging Trusted Execution Environments and the promising concept of Functional Encryption

    Digital Twins and the Future of their Use Enabling Shift Left and Shift Right Cybersecurity Operations

    Full text link
    Digital Twins (DTs), optimize operations and monitor performance in Smart Critical Systems (SCS) domains like smart grids and manufacturing. DT-based cybersecurity solutions are in their infancy, lacking a unified strategy to overcome challenges spanning next three to five decades. These challenges include reliable data accessibility from Cyber-Physical Systems (CPS), operating in unpredictable environments. Reliable data sources are pivotal for intelligent cybersecurity operations aided with underlying modeling capabilities across the SCS lifecycle, necessitating a DT. To address these challenges, we propose Security Digital Twins (SDTs) collecting realtime data from CPS, requiring the Shift Left and Shift Right (SLSR) design paradigm for SDT to implement both design time and runtime cybersecurity operations. Incorporating virtual CPS components (VC) in Cloud/Edge, data fusion to SDT models is enabled with high reliability, providing threat insights and enhancing cyber resilience. VC-enabled SDT ensures accurate data feeds for security monitoring for both design and runtime. This design paradigm shift propagates innovative SDT modeling and analytics for securing future critical systems. This vision paper outlines intelligent SDT design through innovative techniques, exploring hybrid intelligence with data-driven and rule-based semantic SDT models. Various operational use cases are discussed for securing smart critical systems through underlying modeling and analytics capabilities.Comment: IEEE Submitted Paper: Trust, Privacy and Security in Intelligent Systems, and Application

    Usability and Trust in Information Systems

    Get PDF
    The need for people to protect themselves and their assets is as old as humankind. People's physical safety and their possessions have always been at risk from deliberate attack or accidental damage. The advance of information technology means that many individuals, as well as corporations, have an additional range of physical (equipment) and electronic (data) assets that are at risk. Furthermore, the increased number and types of interactions in cyberspace has enabled new forms of attack on people and their possessions. Consider grooming of minors in chat-rooms, or Nigerian email cons: minors were targeted by paedophiles before the creation of chat-rooms, and Nigerian criminals sent the same letters by physical mail or fax before there was email. But the technology has decreased the cost of many types of attacks, or the degree of risk for the attackers. At the same time, cyberspace is still new to many people, which means they do not understand risks, or recognise the signs of an attack, as readily as they might in the physical world. The IT industry has developed a plethora of security mechanisms, which could be used to mitigate risks or make attacks significantly more difficult. Currently, many people are either not aware of these mechanisms, or are unable or unwilling or to use them. Security experts have taken to portraying people as "the weakest link" in their efforts to deploy effective security [e.g. Schneier, 2000]. However, recent research has revealed at least some of the problem may be that security mechanisms are hard to use, or be ineffective. The review summarises current research on the usability of security mechanisms, and discusses options for increasing their usability and effectiveness
    • 

    corecore