2,566 research outputs found

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    Authorization Framework for the Internet-of-Things

    Get PDF
    This paper describes a framework that allows fine-grained and flexible access control to connected devices with very limited processing power and memory. We propose a set of security and performance requirements for this setting and derive an authorization framework distributing processing costs between constrained devices and less constrained back-end servers while keeping message exchanges with the constrained devices at a minimum. As a proof of concept we present performance results from a prototype implementing the device part of the framework

    Internet of Things (IoT): Societal Challenges & Scientific Research Fields for IoT

    Get PDF
    International audienceJust as the Internet radically reshaped society, the Internet of Things (IoT) willhave an impact on all areas of human life: from our homes, vehicles, workplacesand factories, to our cities and towns, agriculture and healthcare systems. It willalso affect all levels of society (individuals, companies and state-level), from urbanto rural and the natural world beyond. This makes it essential to have a properunderstanding of IoT and the challenges which relate to it. The primary aims ofthis document are to (i) determine the scope of IoT, its origins, current developments and perspectives, and (ii) identify the main societal, technical and scientific challenges linked to IoT.It seems inevitable that IoT will become increasingly omnipresent. Indeed, itis set to penetrate every aspect of all of our lives, connecting everything (billionsof new heterogeneous machines communicating with each other) and measuringeverything: from the collective action we take at a global level, right down to oursmallest individual physiological signals, in real-time. This is a double-edged sword,in that it simultaneously gives people cause for hope (automation, ­optimisation,innovative new functionalities etc.) and cause for fear (surveillance, dependency,cyberattacks, etc.). Given the ever-evolving nature of the IoT, new challenges linked to privacy, transparency, security appear, while new civil and industrialresponsibilities are starting to emerge.IoT is centred around an increasingly complex set of interlinked concepts andembedded technologies. At an industrial level, this growing complexity is makingthe idea of having full control over all components of IoT increasingly difficult, oreven infeasible. However, as a society, we must get to grips with the technologicalfoundations of IoT. One challenge for education will therefore be to graduallyincrease awareness of IoT, both in order to protect individuals’ sovereignty andfree will, and to initiate the training of our future scientists and technicians. Apublic research institute such as Inria can contribute towards understandingand explaining the technological foundations of IoT, in addition to preservingsovereignty in Europe.IoT will inevitably increase dependency on certain types of embeddedt ­ echno­logy. It is hence necessary to identify the new risks that entail, and todevise new strategies in order to take full advantage of IoT, while minimising theserisks. Similarly to the situation in other domains where one must continually seekto preserve ethics without hindering innovation, creating a legal framework forIoT is both necessary and challenging. It nevertheless seems clear already thatthe best way of facing up to industrial giants or superpowers is to take action atthe EU level, as shown by recent examples such as GDPR. Furthermore, given thegrowing influence of technological standards on society, playing an active rolein the process of standardising IoT technology is essential. Open standards andopen source – conceived as a common public good – will be pivotal for IoT, justas they have been for the Internet. Last but not least, massive use of IoT can helpbetter capture and understand the environmental challenges we are ­currentlyfacing – it is also expected IoT will help to mitigate these challenges. The goals inthis context are not only to reduce the quantities of natural resources consumedby IoT (for production, deployment, maintenance and recycling). We must alsoaim to more accurately evaluate the overall net benefit of IoT on the environment,at a global level. This requires determining and subtracting IoT’s environmentalcosts from its (measured) benefits, which is currently a challenge. The growingimpact of IoT underscores the importance of remaining at the cutting edge whenit comes to scientific research and technological development. This documenttherefore aims to (i) highlight the wide range of research fields which are fundamental to IoT, and(ii) take stock of current and future research problems in each of these fields. A number of links are made throughout the document to contributionsmade by Inria. These contributions are, by their nature, diverse (basic and appliedresearch, open source software, startup incubation) and concern the majority ofresearch fields on which IoT is based

    Identity Management Framework for Internet of Things

    Get PDF

    Security and Privacy Challenges in the Internet of Things

    Get PDF
    The future Internet of Things as an intelligent collaboration of miniaturized sensors poses new challenges to security and end-user privacy. The ITU has identified that the protection of data and privacy of users is one of the key challenges in the Internet of Things [Int05]: lack of confidence about privacy will result in decreased adoption among users and therefore is one of the driving factors in the success of the Internet of Things. This paper gives an overview, categorization, and analysis of security and privacy challenges in the Internet of Things
    • …
    corecore