8,221 research outputs found

    Self Controllable Health Care Monitoring Arrangement for Patient

    Get PDF
    In this undertaking is utilized to the Condition care monitoring system. Distributed Healthcare cloud computing arrangement considerably facilitates effectual patient treatment for health consultation by allocating confidential condition data amid healthcare providers. Though, it brings concerning the trial of keeping both the data confidentiality and patients’ individuality privacy simultaneously. Countless continuing admission manipulation and nameless authentication schemes cannot be straightforwardly exploited. The arrangement acts there are provider, doctor, patient and admin. The provider is list to website to consent staying to appeal dispatch to admin. Admin is Proved to in a particular provider it deeds to the present add to doctors and hospital divisions established. User or Patient is list to the site. Patient Login to present the deed booking the doctor appointment in situation patient to dispatch a feedback to that doctor treatment comments onward to admin. Doctors is add provider to dispatch a username and password .Doctor is login to think patient appointment features and checking the doctor is present patient or fake user to identified to dispatch to symptoms description upload files(x-ray).Admin is finished procedure is upheld in this system. Patient dispatch doctors feedback bad or wrong to particular doctors appointment annulled temporally. In this undertaking generally utilized for patient and hospital ,doctors features through online upheld for India astute established on card

    Data interoperability and privacy schemes in healthcare data using Blockchain technology

    Get PDF
    Abstract. Electronic Health/Medical Records (EHR/EMR) lay the foundation for securely maintaining medical records. The traditional EHR systems are not effectively managed data manipulation, delayed communication, trustless data storage, data cooperation, and distribution. Blockchain technology can play a major role in healthcare cases. This is because it uses decentralized distributed ledgers to securely manage all parties within the network. It also handles individual data through smart contracts, which can be pre-programmed by the patient for access and maintenance of healthcare data. This thesis focuses on exploring the blockchain in digital healthcare services such as Electronic Health/Medical Records (EHR/EMR). Blockchain-based implementations of Ethereum allow patients to store their medical data with smart contracts that can perform activities such as Registration, Data Append, and Data Retrieve. The challenges faced during the implementation of blockchain protocols are discussed and analyzed in the scope of finding sustainable solutions to develop secure and reliable operation

    KALwEN: a new practical and interoperable key management scheme for body sensor networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks (BSNs) pose several challenges–some inherited from wireless sensor networks (WSNs), some unique to themselves–that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new parameterized key management scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports secure global broadcast, local broadcast, and local (neighbor-to-neighbor) unicast, while preserving past key secrecy and future key secrecy (FKS). The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case. With both formal verification and experimental evaluation, our results should appeal to theorists and practitioners alike

    Is Blockchain for Internet of Medical Things a Panacea for COVID-19 Pandemic?

    Full text link
    The outbreak of the COVID-19 pandemic has deeply influenced the lifestyle of the general public and the healthcare system of the society. As a promising approach to address the emerging challenges caused by the epidemic of infectious diseases like COVID-19, Internet of Medical Things (IoMT) deployed in hospitals, clinics, and healthcare centers can save the diagnosis time and improve the efficiency of medical resources though privacy and security concerns of IoMT stall the wide adoption. In order to tackle the privacy, security, and interoperability issues of IoMT, we propose a framework of blockchain-enabled IoMT by introducing blockchain to incumbent IoMT systems. In this paper, we review the benefits of this architecture and illustrate the opportunities brought by blockchain-enabled IoMT. We also provide use cases of blockchain-enabled IoMT on fighting against the COVID-19 pandemic, including the prevention of infectious diseases, location sharing and contact tracing, and the supply chain of injectable medicines. We also outline future work in this area.Comment: 15 pages, 8 figure

    Biometrics for internet‐of‐things security: A review

    Get PDF
    The large number of Internet‐of‐Things (IoT) devices that need interaction between smart devices and consumers makes security critical to an IoT environment. Biometrics offers an interesting window of opportunity to improve the usability and security of IoT and can play a significant role in securing a wide range of emerging IoT devices to address security challenges. The purpose of this review is to provide a comprehensive survey on the current biometrics research in IoT security, especially focusing on two important aspects, authentication and encryption. Regarding authentication, contemporary biometric‐based authentication systems for IoT are discussed and classified based on different biometric traits and the number of biometric traits employed in the system. As for encryption, biometric‐cryptographic systems, which integrate biometrics with cryptography and take advantage of both to provide enhanced security for IoT, are thoroughly reviewed and discussed. Moreover, challenges arising from applying biometrics to IoT and potential solutions are identified and analyzed. With an insight into the state‐of‐the‐art research in biometrics for IoT security, this review paper helps advance the study in the field and assists researchers in gaining a good understanding of forward‐looking issues and future research directions

    A lightweight and secure multilayer authentication scheme for wireless body area networks in healthcare system

    Get PDF
    Wireless body area networks (WBANs) have lately been combined with different healthcare equipment to monitor patients' health status and communicate information with their healthcare practitioners. Since healthcare data often contain personal and sensitive information, it is important that healthcare systems have a secure way for users to log in and access resources and services. The lack of security and presence of anonymous communication in WBANs can cause their operational failure. There are other systems in this area, but they are vulnerable to offline identity guessing attacks, impersonation attacks in sensor nodes, and spoofing attacks in hub node. Therefore, this study provides a secure approach that overcomes these issues while maintaining comparable efficiency in wireless sensor nodes and mobile phones. To conduct the proof of security, the proposed scheme uses the Scyther tool for formal analysis and the Canetti–Krawczyk (CK) model for informal analysis. Furthermore, the suggested technique outperforms the existing symmetric and asymmetric encryption-based schemes
    corecore