3,111 research outputs found

    The Internet of Hackable Things

    Get PDF
    The Internet of Things makes possible to connect each everyday object to the Internet, making computing pervasive like never before. From a security and privacy perspective, this tsunami of connectivity represents a disaster, which makes each object remotely hackable. We claim that, in order to tackle this issue, we need to address a new challenge in security: education

    E-infrastructures fostering multi-centre collaborative research into the intensive care management of patients with brain injury

    Get PDF
    Clinical research is becoming ever more collaborative with multi-centre trials now a common practice. With this in mind, never has it been more important to have secure access to data and, in so doing, tackle the challenges of inter-organisational data access and usage. This is especially the case for research conducted within the brain injury domain due to the complicated multi-trauma nature of the disease with its associated complex collation of time-series data of varying resolution and quality. It is now widely accepted that advances in treatment within this group of patients will only be delivered if the technical infrastructures underpinning the collection and validation of multi-centre research data for clinical trials is improved. In recognition of this need, IT-based multi-centre e-Infrastructures such as the Brain Monitoring with Information Technology group (BrainIT - www.brainit.org) and Cooperative Study on Brain Injury Depolarisations (COSBID - www.cosbid.de) have been formed. A serious impediment to the effective implementation of these networks is access to the know-how and experience needed to install, deploy and manage security-oriented middleware systems that provide secure access to distributed hospital based datasets and especially the linkage of these data sets across sites. The recently funded EU framework VII ICT project Advanced Arterial Hypotension Adverse Event prediction through a Novel Bayesian Neural Network (AVERT-IT) is focused upon tackling these challenges. This chapter describes the problems inherent to data collection within the brain injury medical domain, the current IT-based solutions designed to address these problems and how they perform in practice. We outline how the authors have collaborated towards developing Grid solutions to address the major technical issues. Towards this end we describe a prototype solution which ultimately formed the basis for the AVERT-IT project. We describe the design of the underlying Grid infrastructure for AVERT-IT and how it will be used to produce novel approaches to data collection, data validation and clinical trial design is also presented

    Description and Experience of the Clinical Testbeds

    Get PDF
    This deliverable describes the up-to-date technical environment at three clinical testbed demonstrator sites of the 6WINIT Project, including the adapted clinical applications, project components and network transition technologies in use at these sites after 18 months of the Project. It also provides an interim description of early experiences with deployment and usage of these applications, components and technologies, and their clinical service impact

    IoT Health Devices: Exploring Security Risks in the Connected Landscape

    Get PDF
    The concept of the Internet of Things (IoT) spans decades, and the same can be said for its inclusion in healthcare. The IoT is an attractive target in medicine; it offers considerable potential in expanding care. However, the application of the IoT in healthcare is fraught with an array of challenges, and also, through it, numerous vulnerabilities that translate to wider attack surfaces and deeper degrees of damage possible to both consumers and their confidence within health systems, as a result of patient-specific data being available to access. Further, when IoT health devices (IoTHDs) are developed, a diverse range of attacks are possible. To understand the risks in this new landscape, it is important to understand the architecture of IoTHDs, operations, and the social dynamics that may govern their interactions. This paper aims to document and create a map regarding IoTHDs, lay the groundwork for better understanding security risks in emerging IoTHD modalities through a multi-layer approach, and suggest means for improved governance and interaction. We also discuss technological innovations expected to set the stage for novel exploits leading into the middle and latter parts of the 21st century

    Ensuring patients privacy in a cryptographic-based-electronic health records using bio-cryptography

    Get PDF
    Several recent works have proposed and implemented cryptography as a means to preserve privacy and security of patients health data. Nevertheless, the weakest point of electronic health record (EHR) systems that relied on these cryptographic schemes is key management. Thus, this paper presents the development of privacy and security system for cryptography-based-EHR by taking advantage of the uniqueness of fingerprint and iris characteristic features to secure cryptographic keys in a bio-cryptography framework. The results of the system evaluation showed significant improvements in terms of time efficiency of this approach to cryptographic-based-EHR. Both the fuzzy vault and fuzzy commitment demonstrated false acceptance rate (FAR) of 0%, which reduces the likelihood of imposters gaining successful access to the keys protecting patients protected health information. This result also justifies the feasibility of implementing fuzzy key binding scheme in real applications, especially fuzzy vault which demonstrated a better performance during key reconstruction

    MedLAN: Compact mobile computing system for wireless information access in emergency hospital wards

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As the need for faster, safer and more efficient healthcare delivery increases, medical consultants seek new ways of implementing a high quality telemedical system, using innovative technology. Until today, teleconsultation (the most common application of Telemedicine) was performed by transferring the patient from the Accidents and Emergency ward, to a specially equipped room, or by moving large and heavy machinery to the place where the patient resided. Both these solutions were unpractical, uneconomical and potentially dangerous. At the same time wireless networks became increasingly useful in point-of-care areas such as hospitals, because of their ease of use, low cost of installation and increased flexibility. This thesis presents an integrated system called MedLAN dedicated for use inside the A&E hospital wards. Its purpose is to wirelessly support high-quality live video, audio, high-resolution still images and networks support from anywhere there is WLAN coverage. It is capable of transmitting all of the above to a consultant residing either inside or outside the hospital, or even to an external place, thorough the use of the Internet. To implement that, it makes use of the existing IEEE 802.11b wireless technology. Initially, this thesis demonstrates that for specific scenarios (such as when using WLANs), DICOM specifications should be adjusted to accommodate for the reduced WLAN bandwidth. Near lossless compression has been used to send still images through the WLANs and the results have been evaluated by a number of consultants to decide whether they retain their diagnostic value. The thesis further suggests improvements on the existing 802.11b protocol. In particular, as the typical hospital environment suffers from heavy RF reflections, it suggests that an alternative method of modulation (OFDM) can be embedded in the 802.11b hardware to reduce the multipath effect, increase the throughput and thus the video quality sent by the MedLAN system. Finally, realising that the trust between a patient and a doctor is fundamental this thesis proposes a series of simple actions aiming at securing the MedLAN system. Additionally, a concrete security system is suggested, that encapsulates the existing WEP security protocol, over IPSec

    A review of multi-factor authentication in the internet of healthcare things

    Get PDF
    Objective: This review paper aims to evaluate existing solutions in healthcare authentication and provides an insight into the technologies incorporated in Internet of Healthcare Things (IoHT) and multi-factor authentication (MFA) applications for next-generation authentication practices. Our review has two objectives: (a) Review MFA based on the challenges, impact and solutions discussed in the literature; and (b) define the security requirements of the IoHT as an approach to adapting MFA solutions in a healthcare context. Methods: To review the existing literature, we indexed articles from the IEEE Xplore, ACM Digital Library, ScienceDirect, and SpringerLink databases. The search was refined to combinations of ‘authentication’, ‘multi-factor authentication’, ‘Internet of Things authentication’, and ‘medical authentication’ to ensure that the retrieved journal articles and conference papers were relevant to healthcare and Internet of Things-oriented authentication research. Results: The concepts of MFA can be applied to healthcare where security can often be overlooked. The security requirements identified result in stronger methodologies of authentication such as hardware solutions in combination with biometric data to enhance MFA approaches. We identify the key vulnerabilities of weaker approaches to security such as password use against various cyber threats. Cyber threats and MFA solutions are categorised in this paper to facilitate readers’ understanding of them in healthcare domains. Conclusions: We contribute to an understanding of up-to-date MFA approaches and how they can be improved for use in the IoHT. This is achieved by discussing the challenges, benefits, and limitations of current methodologies and recommendations to improve access to eHealth resources through additional layers of security
    • …
    corecore