122 research outputs found

    A proposed NFC payment application

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Near Field Communication (NFC) technology is based on a short range radio communication channel which enables users to exchange data between devices. With NFC technology, mobile services establish a contactless transaction system to make the payment methods easier for people. Although NFC mobile services have great potential for growth, they have raised several issues which have concerned the researches and prevented the adoption of this technology within societies. Reorganizing and describing what is required for the success of this technology have motivated us to extend the current NFC ecosystem models to accelerate the development of this business area. In this paper, we introduce a new NFC payment application, which is based on our previous “NFC Cloud Wallet” model [1] to demonstrate a reliable structure of NFC ecosystem. We also describe the step by step execution of the proposed protocol in order to carefully analyse the payment application and our main focus will be on the Mobile Network Operator (MNO) as the main player within the ecosystem

    Improving security for remote payments

    Get PDF
    Given the growing popularity of e-commerce and m-commerce over the past few years, remote payments have become commonplace. Unfortunately, remote payments fraud has grown in response. On September 26, 2011, the Federal Reserve Bank of Chicago and the Secure Remote Payment Council (SRPc) co-hosted a symposium to discuss strategies that help reduce such forms of fraud.Fraud ; Payment systems

    Attacks On Near Field Communication Devices

    Get PDF
    For some years, Near Field Communication (NFC) has been a popularly known technology characterized by its short-distance wireless communication, mainly used in providing different agreeable services such as payment with mobile phones in stores, Electronic Identification, Transportation Electronic Ticketing, Patient Monitoring, and Healthcare. The ability to quickly connect devices offers a level of secure communication. That notwithstanding, looking deeply at NFC and its security level, identifying threats leading to attacks that can alter the user’s confidentiality and data privacy becomes obvious. This paper summarizes some of these attacks, emphasizing four main attack vectors, bringing out a taxonomy of these attack vectors on NFC, and presenting security issues alongside privacy threats within the application environment

    Consumer-facing technology fraud : economics, attack methods and potential solutions

    Get PDF
    The emerging use of modern technologies has not only benefited society but also attracted fraudsters and criminals to misuse the technology for financial benefits. Fraud over the Internet has increased dramatically, resulting in an annual loss of billions of dollars to customers and service providers worldwide. Much of such fraud directly impacts individuals, both in the case of browser-based and mobile-based Internet services, as well as when using traditional telephony services, either through landline phones or mobiles. It is important that users of the technology should be both informed of fraud, as well as protected from frauds through fraud detection and prevention systems. In this paper, we present the anatomy of frauds for different consumer-facing technologies from three broad perspectives - we discuss Internet, mobile and traditional telecommunication, from the perspectives of losses through frauds over the technology, fraud attack mechanisms and systems used for detecting and preventing frauds. The paper also provides recommendations for securing emerging technologies from fraud and attacks

    Does the online card payment system unwittingly facilitate fraud?

    Get PDF
    PhD ThesisThe research work in this PhD thesis presents an extensive investigation into the security settings of Card Not Present (CNP) financial transactions. These are the transactions which include payments performed with a card over the Internet on the websites, and over the phone. Our detailed analysis on hundreds of websites and on multiple CNP payment protocols justifies that the current security architecture of CNP payment system is not adequate enough to protect itself from fraud. Unintentionally, the payment system itself will allow an adversary to learn and exploit almost all of the security features put in place to protect the CNP payment system from fraud. With insecure modes of accepting payments, the online payment system paves the way for cybercriminals to abuse even the latest designed payment protocols like 3D Secure 2.0. We follow a structured analysis methodology which identifies vulnerabilities in the CNP payment protocols and demonstrates the impact of these vulnerabilities on the overall payment system. The analysis methodology comprises of UML diagrams and reference tables which describe the CNP payment protocol sequences, software tools which implements the protocol and practical demonstrations of the research results. Detailed referencing of the online payment specifications provides a documented link between the exploitable vulnerabilities observed in real implementations and the source of the vulnerability in the payment specifications. We use practical demonstrations to show that these vulnerabilities can be exploited in the real-world with ease. This presents a stronger impact message when presenting our research results to a nontechnical audience. This has helped to raise awareness of security issues relating to payment cards, with our work appearing in the media, radio and T

    Snappy: Fast On-chain Payments with Practical Collaterals

    Full text link
    Permissionless blockchains offer many advantages but also have significant limitations including high latency. This prevents their use in important scenarios such as retail payments, where merchants should approve payments fast. Prior works have attempted to mitigate this problem by moving transactions off the chain. However, such Layer-2 solutions have their own problems: payment channels require a separate deposit towards each merchant and thus significant locked-in funds from customers; payment hubs require very large operator deposits that depend on the number of customers; and side-chains require trusted validators. In this paper, we propose Snappy, a novel solution that enables recipients, like merchants, to safely accept fast payments. In Snappy, all payments are on the chain, while small customer collaterals and moderate merchant collaterals act as payment guarantees. Besides receiving payments, merchants also act as statekeepers who collectively track and approve incoming payments using majority voting. In case of a double-spending attack, the victim merchant can recover lost funds either from the collateral of the malicious customer or a colluding statekeeper (merchant). Snappy overcomes the main problems of previous solutions: a single customer collateral can be used to shop with many merchants; merchant collaterals are independent of the number of customers; and validators do not have to be trusted. Our Ethereum prototype shows that safe, fast (<2 seconds) and cheap payments are possible on existing blockchains.Comment: Network and Distributed Systems Security (NDSS) Symposium 2020, 23-26 February 2020, San Diego, CA, US

    Breaking Benjamin: Security Threats in Mobile Payment Applications

    Get PDF

    PROTECTION AGAINST FRAUD IN ELECTRONIC TRADE PAYMENTS

    Get PDF
    The past decades have seen continuous advancements of information and communication technologies that have substantially altered economy on a local, national and global scale. The employment of these technologies creates and tranfers to economic entities significant economic and social effects, yet it poses serious challenges to the security of the digital environment. An increasingly complicated issue is that of unlawful activities with payment transactions in trade. This paper reviews the nature of crimes related to payments in the physical and the digital environment; the characteristics of different technological means of safeguarding online payments, as well as some opportunities for improving the safety of individuals when using the Internet to make commercial payments
    • 

    corecore