58,897 research outputs found

    Towards a Layered Architectural View for Security Analysis in SCADA Systems

    Full text link
    Supervisory Control and Data Acquisition (SCADA) systems support and control the operation of many critical infrastructures that our society depend on, such as power grids. Since SCADA systems become a target for cyber attacks and the potential impact of a successful attack could lead to disastrous consequences in the physical world, ensuring the security of these systems is of vital importance. A fundamental prerequisite to securing a SCADA system is a clear understanding and a consistent view of its architecture. However, because of the complexity and scale of SCADA systems, this is challenging to acquire. In this paper, we propose a layered architectural view for SCADA systems, which aims at building a common ground among stakeholders and supporting the implementation of security analysis. In order to manage the complexity and scale, we define four interrelated architectural layers, and uses the concept of viewpoints to focus on a subset of the system. We indicate the applicability of our approach in the context of SCADA system security analysis.Comment: 7 pages, 4 figure

    Securing Internet Protocol (IP) Storage: A Case Study

    Full text link
    Storage networking technology has enjoyed strong growth in recent years, but security concerns and threats facing networked data have grown equally fast. Today, there are many potential threats that are targeted at storage networks, including data modification, destruction and theft, DoS attacks, malware, hardware theft and unauthorized access, among others. In order for a Storage Area Network (SAN) to be secure, each of these threats must be individually addressed. In this paper, we present a comparative study by implementing different security methods in IP Storage network.Comment: 10 Pages, IJNGN Journa

    Securing personal distributed environments

    Get PDF
    The Personal Distributed Environment (PDE) is a new concept being developed by Mobile VCE allowing future mobile users flexible access to their information and services. Unlike traditional mobile communications, the PDE user no longer needs to establish his or her personal communication link solely through one subscribing network but rather a diversity of disparate devices and access technologies whenever and wherever he or she requires. Depending on the services’ availability and coverage in the location, the PDE communication configuration could be, for instance, via a mobile radio system and a wireless ad hoc network or a digital broadcast system and a fixed telephone network. This new form of communication configuration inherently imposes newer and higher security challenges relating to identity and authorising issues especially when the number of involved entities, accessible network nodes and service providers, builds up. These also include the issue of how the subscribed service and the user’s personal information can be securely and seamlessly handed over via multiple networks, all of which can be changing dynamically. Without such security, users and operators will not be prepared to trust their information to other networks

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    DTLS Performance in Duty-Cycled Networks

    Get PDF
    The Datagram Transport Layer Security (DTLS) protocol is the IETF standard for securing the Internet of Things. The Constrained Application Protocol, ZigBee IP, and Lightweight Machine-to-Machine (LWM2M) mandate its use for securing application traffic. There has been much debate in both the standardization and research communities on the applicability of DTLS to constrained environments. The main concerns are the communication overhead and latency of the DTLS handshake, and the memory footprint of a DTLS implementation. This paper provides a thorough performance evaluation of DTLS in different duty-cycled networks through real-world experimentation, emulation and analysis. In particular, we measure the duration of the DTLS handshake when using three duty cycling link-layer protocols: preamble-sampling, the IEEE 802.15.4 beacon-enabled mode and the IEEE 802.15.4e Time Slotted Channel Hopping mode. The reported results demonstrate surprisingly poor performance of DTLS in radio duty-cycled networks. Because a DTLS client and a server exchange more than 10 signaling packets, the DTLS handshake takes between a handful of seconds and several tens of seconds, with similar results for different duty cycling protocols. Moreover, because of their limited memory, typical constrained nodes can only maintain 3-5 simultaneous DTLS sessions, which highlights the need for using DTLS parsimoniously.Comment: International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC - 2015), IEEE, IEEE, 2015, http://pimrc2015.eee.hku.hk/index.htm

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure
    • 

    corecore