82 research outputs found

    HyBIS: Windows Guest Protection through Advanced Memory Introspection

    Full text link
    Effectively protecting the Windows OS is a challenging task, since most implementation details are not publicly known. Windows has always been the main target of malwares that have exploited numerous bugs and vulnerabilities. Recent trusted boot and additional integrity checks have rendered the Windows OS less vulnerable to kernel-level rootkits. Nevertheless, guest Windows Virtual Machines are becoming an increasingly interesting attack target. In this work we introduce and analyze a novel Hypervisor-Based Introspection System (HyBIS) we developed for protecting Windows OSes from malware and rootkits. The HyBIS architecture is motivated and detailed, while targeted experimental results show its effectiveness. Comparison with related work highlights main HyBIS advantages such as: effective semantic introspection, support for 64-bit architectures and for latest Windows (8.x and 10), advanced malware disabling capabilities. We believe the research effort reported here will pave the way to further advances in the security of Windows OSes

    KVM Based Virtualization and Remote Management

    Get PDF
    In the recent past, cloud computing is the most significant shifts and Kernel Virtual Machine (KVM) is the most commonly deployed hypervisor which are used in the IaaS layer of the cloud computing systems. The Hypervisor is the one which provides the complete virtualization environment which will intend to virtualize as much as hardware and systems which will include the CPUs, Memory, network interfaces and so on. Because of the virtualization technologies such as the KVM and others such as ESXi, there has been a significant decrease in the usage if the resources and decrease in the costs involved. Firstly, in this Paper I will be discussing about the different hypervisors that are used for the virtualization of the systems, then I discuss about how the virtualization using the Kernel Virtual Machine (KVM) is made easy, and then discuss about the Host security, the access and the security of the KVM virtual machines by the remote management using the Secure Sell (SSH) tunnels, Simple Authentication and Secure Layer (SASL) authentication and Transport Layer Security (TLS)

    Assessing performance overhead of Virtual Machine Introspection and its suitability for malware analysis

    Get PDF
    Virtual Machine Introspection is the process of introspecting guest VM’s memory and reconstructing the state of the guest operating system. Due to its isolation, stealth and full visibility of the monitored target, VMI lends itself well for security monitoring and malware analysis. The topics covered in this thesis include operating system and hypervisor concepts, the semantic gap issue, VMI techniques and implementations, applying VMI for malware analysis, and analysis of the performance overhead. The behaviour and magnitude of the performance overhead associated with doing virtual machine introspection is analysed with five different empirical test cases. The intention of the tests is to estimate the costs of a single trapped event, determine the feasibility of various monitoring sensors from usability and stealth perspective, and analyse the behaviour of performance overhead. Various VMI-based tools were considered for the measurement, but DRAKVUF was chosen as it is the most advanced tool available. The test cases go as follows. The chosen load is first executed without any monitoring to determine the baseline execution time. Then a DRAKVUF monitoring plugin is turned on and the load is executed again. After both measurements have been made, the difference between the two execution times is the time spent executing monitoring code. The execution overhead is then determined by calculating the difference between the two execution times and dividing it by the baseline execution time. The disc consumption and execution overhead of a sensor, which captures removed files is small enough to be deployed as a monitoring solution. The performance overhead of system call monitoring sensor is dependant on the number of issued system calls. Loads which issue large numbers of system calls cause high performance overhead. The performance overhead of such loads can be limited by monitoring a subset of all system calls

    Rescuing the End-user systems from Vulnerable Applications using Virtualization Techniques

    Full text link
    In systems owned by normal end-users, many times security attacks are mounted by sneaking in malicious applications or exploiting existing software vulnerabilities through security non-conforming actions of users. Virtualization approaches can address this problem by providing a quarantine environment for applications, malicious devices, and device drivers, which are mostly used as entry points for security attacks. However, the existing methods to provide quarantine environments using virtualization are not transparent to the user, both in terms of application interface transparency and file system transparency. Further, software configuration level solutions like remote desktops and remote application access mechanisms combined with shared file systems do not meet the user transparency and security requirements. We propose qOS, a VM-based solution combined with certain OS extensions to meet the security requirements of end-point systems owned by normal users, in a transparent and efficient manner. We demonstrate the efficacy of qOS by empirically evaluating the prototype implementation in the Linux+KVM system in terms of efficiency, security, and user transparency.Comment: 14 pages, 9 figure

    Insight from a Docker Container Introspection

    Get PDF
    Large-scale adoption of virtual containers has stimulated concerns by practitioners and academics about the viability of data acquisition and reliability due to the decreasing window to gather relevant data points. These concerns prompted the idea that introspection tools, which are able to acquire data from a system as it is running, can be utilized as both an early warning system to protect that system and as a data capture system that collects data that would be valuable from a digital forensic perspective. An exploratory case study was conducted utilizing a Docker engine and Prometheus as the introspection tool. The research contribution of this research is two-fold. First, it provides empirical support for the idea that introspection tools can be utilized to ascertain differences between pristine and infected containers. Second, it provides the ground work for future research conducting an analysis of large-scale containerized applications in a virtual cloud

    Securing Virtualized System via Active Protection

    Get PDF
    Virtualization is the predominant enabling technology of current cloud infrastructure

    A Survey on Security Aspects of Server Virtualization in Cloud Computing

    Get PDF
    Significant exploitation and utilization of cloud computing in industry is come with and in the identical time vulnerable by unease regarding protection of data hold by cloud computing providers. One of the penalties of moving data processing and storage off business site is that organizations have fewer controls over their infrastructure. seeing that, cloud service (CS) providers must hope that the CS provider is capable to protect their data and infrastructure from both exterior and domestic attacks. Presently however, such hope can only rely on organizational procedures stated by the CS provider and cannot be remotely verified and validated by an external party. The central distinction between cloud computing and conventional enterprise internal Information Technology services is that the proprietor and the consumer of cloud Information Technology infrastructures are separated in cloud. This transform requires a safety responsibility severance in cloud computing. Cloud service providers (CSP) should safe the services they propose and cannot surpass the customers’ authorities. Virtualization is a buildup utterance in the Information Technology world. With the assure to reduce the ever mounting infrastructure inside data centers connected to other important apprehensions such as ease of use and scalability, virtualization technology has been in advance recognition not only with IT experts yet also among administrators and executives as well. The progressively more growing rate of the approval of this technology has exposed these systems to new protection concerns which in recent history have been unnoticed or merely overlooked. This paper presents an in depth state of art gaze at  present most old server virtualization explanations, as well as a writing study on different security matters found inside this virtualization technology. These problems can be practical to all the existing virtualization technologies accessible with no spotlight on a specific answer. Nevertheless, we do susceptibility investigation of two of the mainstream recognized virtualization answers: VMware ESX and Xen. to conclude, we illustrate some clarifications on how to progress the security of online banking and electronic commerce, using virtualization

    Exploring New Paradigms for Mobile Edge Computing

    Get PDF
    Edge computing has been rapidly growing in recent years to meet the surging demands from mobile apps and Internet of Things (IoT). Similar to the Cloud, edge computing provides computation, storage, data, and application services to the end-users. However, edge computing is usually deployed at the edge of the network, which can provide low-latency and high-bandwidth services for end devices. So far, edge computing is still not widely adopted. One significant challenge is that the edge computing environment is usually heterogeneous, involving various operating systems and platforms, which complicates app development and maintenance. in this dissertation, we explore to combine edge computing with virtualization techniques to provide a homogeneous environment, where edge nodes and end devices run exactly the same operating system. We develop three systems based on the homogeneous edge computing environment to improve the security and usability of end-device applications. First, we introduce vTrust, a new mobile Trusted Execution Environment (TEE), which offloads the general execution and storage of a mobile app to a nearby edge node and secures the I/O between the edge node and the mobile device with the aid of a trusted hypervisor on the mobile device. Specifically, vTrust establishes an encrypted I/O channel between the local hypervisor and the edge node, such that any sensitive data flowing through the hosted mobile OS is encrypted. Second, we present MobiPlay, a record-and-replay tool for mobile app testing. By collaborating a mobile phone with an edge node, MobiPlay can effectively record and replay all types of input data on the mobile phone without modifying the mobile operating system. to do so, MobiPlay runs the to-be-tested application on the edge node under exactly the same environment as the mobile device and allows the tester to operate the application on a mobile device. Last, we propose vRent, a new mechanism to leverage smartphone resources as edge node based on Xen virtualization and MiniOS. vRent aims to mitigate the shortage of available edge nodes. vRent enforces isolation and security by making the users\u27 android OSes as Guest OSes and rents the resources to a third-party in the form of MiniOSes
    • 

    corecore