429 research outputs found

    OPAQUE: Protecting Path Privacy in Directions Search

    Get PDF
    2008-2009 > Academic research: refereed > Refereed conference pape

    Trajectory Privacy Preservation and Lightweight Blockchain Techniques for Mobility-Centric IoT

    Get PDF
    Various research efforts have been undertaken to solve the problem of trajectory privacy preservation in the Internet of Things (IoT) of resource-constrained mobile devices. Most attempts at resolving the problem have focused on the centralized model of IoT, which either impose high delay or fail against a privacy-invading attack with long-term trajectory observation. These proposed solutions also fail to guarantee location privacy for trajectories with both geo-tagged and non-geo-tagged data, since they are designed for geo-tagged trajectories only. While a few blockchain-based techniques have been suggested for preserving trajectory privacy in decentralized model of IoT, they require large storage capacity on resource-constrained devices and can only provide conditional privacy when a set of authorities governs the blockchain. This dissertation addresses these challenges to develop efficient trajectory privacy-preservation and lightweight blockchain techniques for mobility-centric IoT. We develop a pruning-based technique by quantifying the relationship between trajectory privacy and delay for real-time geo-tagged queries. This technique yields higher trajectory privacy with a reduced delay than contemporary techniques while preventing a long-term observation attack. We extend our study with the consideration of the presence of non-geo-tagged data in a trajectory. We design an attack model to show the spatiotemporal correlation between the geo-tagged and non-geo-tagged data which undermines the privacy guarantee of existing techniques. In response, we propose a methodology that considers the spatial distribution of the data in trajectory privacy-preservation and improves existing solutions, in privacy and usability. With respect to blockchain, we design and implement one of the first blockchain storage management techniques utilizing the mobility of the devices. This technique reduces the required storage space of a blockchain and makes it lightweight for resource-constrained mobile devices. To address the trajectory privacy challenges in an authority-based blockchain under the short-range communication constraints of the devices, we introduce a silence-based one of the first technique to establish a balance between trajectory privacy and blockchain utility. The designed trajectory privacy- preservation techniques we established are light- weight and do not require an intermediary to guarantee trajectory privacy, thereby providing practical and efficient solution for different mobility-centric IoT, such as mobile crowdsensing and Internet of Vehicles

    An Approach for Ensuring Robust Support for Location Privacy and Identity Inference Protection

    Get PDF
    The challenge of preserving a user\u27s location privacy is more important now than ever before with the proliferation of handheld devices and the pervasive use of location based services. To protect location privacy, we must ensure k-anonymity so that the user remains indistinguishable among k-1 other users. There is no better way but to use a location anonymizer (LA) to achieve k-anonymity. However, its knowledge of each user\u27s current location makes it susceptible to be a single-point-of-failure. In this thesis, we propose a formal location privacy framework, termed SafeGrid that can work with or without an LA. In SafeGrid, LA is designed in such a way that it is no longer a single point of failure. In addition, it is resistant to known attacks and most significantly, the cloaking algorithm it employs meets reciprocity condition. Simulation results exhibit its better performance in query processing and cloaking region calculation compared with existing solutions. In this thesis, we also show that satisfying k-anonymity is not enough in preserving privacy. Especially in an environment where a group of colluded service providers collaborate with each other, a user\u27s privacy can be compromised through identity inference attacks. We present a detailed analysis of such attacks on privacy and propose a novel and powerful privacy definition called s-proximity. In addition to building a formal definition for s-proximity, we show that it is practical and it can be incorporated efficiently into existing systems to make them secure

    Internet of Things data contextualisation for scalable information processing, security, and privacy

    Get PDF
    The Internet of Things (IoT) interconnects billions of sensors and other devices (i.e., things) via the internet, enabling novel services and products that are becoming increasingly important for industry, government, education and society in general. It is estimated that by 2025, the number of IoT devices will exceed 50 billion, which is seven times the estimated human population at that time. With such a tremendous increase in the number of IoT devices, the data they generate is also increasing exponentially and needs to be analysed and secured more efficiently. This gives rise to what is appearing to be the most significant challenge for the IoT: Novel, scalable solutions are required to analyse and secure the extraordinary amount of data generated by tens of billions of IoT devices. Currently, no solutions exist in the literature that provide scalable and secure IoT scale data processing. In this thesis, a novel scalable approach is proposed for processing and securing IoT scale data, which we refer to as contextualisation. The contextualisation solution aims to exclude irrelevant IoT data from processing and address data analysis and security considerations via the use of contextual information. More specifically, contextualisation can effectively reduce the volume, velocity and variety of data that needs to be processed and secured in IoT applications. This contextualisation-based data reduction can subsequently provide IoT applications with the scalability needed for IoT scale knowledge extraction and information security. IoT scale applications, such as smart parking or smart healthcare systems, can benefit from the proposed method, which  improves the scalability of data processing as well as the security and privacy of data.   The main contributions of this thesis are: 1) An introduction to context and contextualisation for IoT applications; 2) a contextualisation methodology for IoT-based applications that is modelled around observation, orientation, decision and action loops; 3) a collection of contextualisation techniques and a corresponding software platform for IoT data processing (referred to as contextualisation-as-a-service or ConTaaS) that enables highly scalable data analysis, security and privacy solutions; and 4) an evaluation of ConTaaS in several IoT applications to demonstrate that our contextualisation techniques permit data analysis, security and privacy solutions to remain linear, even in situations where the number of IoT data points increases exponentially
    corecore