497 research outputs found

    Steganography Based on Random Pixel Selection For Efficient Data Hiding

    Get PDF
    ABSTRACT In this paper we present a novel steganographic approach to increase the security of the data hidden in a cover RGB image. Here we have used LSB insertion method that hides the bits of a secret message into the least significant bit in the red plane of the pixels within a cover image. The pixels are selected by using a random number generator. It is commonly seen that the changes in the LSB of the colour cannot be detected due to noise that is presents in the digital images by the human visual system. The central idea of the proposed method is to increase security, so the data is embedded only into the red plane of the image. We have also explained the method that extracts the hidden message at the receiving end using a key. The main objective of the paper is to combine both the preferences and the resistance to the visual and statistical attacks for a large amount of the data to be hidden in a cover image

    The dynamics of complex systems. Studies and applications in computer science and biology

    Get PDF
    Our research has focused on the study of complex dynamics and on their use in both information security and bioinformatics. Our first work has been on chaotic discrete dynamical systems, and links have been established between these dynamics on the one hand, and either random or complex behaviors. Applications on information security are on the pseudorandom numbers generation, hash functions, informationhiding, and on security aspects on wireless sensor networks. On the bioinformatics level, we have applied our studies of complex systems to theevolution of genomes and to protein folding

    Improved steganalysis technique based on least significant bit using artificial neural network for MP3 files

    Get PDF
    MP3 files are one of the most widely used digital audio formats that provide a high compression ratio with reliable quality. Their widespread use has resulted in MP3 audio files becoming excellent covers to carry hidden information in audio steganography on the Internet. Emerging interest in uncovering such hidden information has opened up a field of research called steganalysis that looked at the detection of hidden messages in a specific media. Unfortunately, the detection accuracy in steganalysis is affected by bit rates, sampling rate of the data type, compression rates, file track size and standard, as well as benchmark dataset of the MP3 files. This thesis thus proposed an effective technique to steganalysis of MP3 audio files by deriving a combination of features from MP3 file properties. Several trials were run in selecting relevant features of MP3 files like the total harmony distortion, power spectrum density, and peak signal-to-noise ratio (PSNR) for investigating the correlation between different channels of MP3 signals. The least significant bit (LSB) technique was used in the detection of embedded secret files in stego-objects. This involved reading the stego-objects for statistical evaluation for possible points of secret messages and classifying these points into either high or low tendencies for containing secret messages. Feed Forward Neural Network with 3 layers and traingdx function with an activation function for each layer were also used. The network vector contains information about all features, and is used to create a network for the given learning process. Finally, an evaluation process involving the ANN test that compared the results with previous techniques, was performed. A 97.92% accuracy rate was recorded when detecting MP3 files under 96 kbps compression. These experimental results showed that the proposed approach was effective in detecting embedded information in MP3 files. It demonstrated significant improvement in detection accuracy at low embedding rates compared with previous work

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Preserving privacy in edge computing

    Get PDF
    Edge computing or fog computing enables realtime services to smart application users by storing data and services at the edge of the networks. Edge devices in the edge computing handle data storage and service provisioning. Therefore, edge computing has become a  new norm for several delay-sensitive smart applications such as automated vehicles, ambient-assisted living, emergency response services, precision agriculture, and smart electricity grids. Despite having great potential, privacy threats are the main barriers to the success of edge computing. Attackers can leak private or sensitive information of data owners and modify service-related data for hampering service provisioning in edge computing-based smart applications. This research takes privacy issues of heterogeneous smart application data into account that are stored in edge data centers. From there, this study focuses on the development of privacy-preserving models for user-generated smart application data in edge computing and edge service-related data, such as Quality-of-Service (QoS) data, for ensuring unbiased service provisioning. We begin with developing privacy-preserving techniques for user data generated by smart applications using steganography that is one of the data hiding techniques. In steganography, user sensitive information is hidden within nonsensitive information of data before outsourcing smart application data, and stego data are produced for storing in the edge data center. A steganography approach must be reversible or lossless to be useful in privacy-preserving techniques. In this research, we focus on numerical (sensor data) and textual (DNA sequence and text) data steganography. Existing steganography approaches for numerical data are irreversible. Hence, we introduce a lossless or reversible numerical data steganography approach using Error Correcting Codes (ECC). Modern lossless steganography approaches for text data steganography are mainly application-specific and lacks imperceptibility, and DNA steganography requires reference DNA sequence for the reconstruction of the original DNA sequence. Therefore, we present the first blind and lossless DNA sequence steganography approach based on the nucleotide substitution method in this study. In addition, a text steganography method is proposed that using invisible character and compression based encoding for ensuring reversibility and higher imperceptibility.  Different experiments are conducted to demonstrate the justification of our proposed methods in these studies. The searching capability of the stored stego data is challenged in the edge data center without disclosing sensitive information. We present a privacy-preserving search framework for stego data on the edge data center that includes two methods. In the first method, we present a keyword-based privacy-preserving search method that allows a user to send a search query as a hash string. However, this method does not support the range query. Therefore, we develop a range search method on stego data using an order-preserving encryption (OPE) scheme. In both cases, the search service provider retrieves corresponding stego data without revealing any sensitive information. Several experiments are conducted for evaluating the performance of the framework. Finally, we present a privacy-preserving service computation framework using Fully Homomorphic Encryption (FHE) based cryptosystem for ensuring the service provider's privacy during service selection and composition. Our contributions are two folds. First, we introduce a privacy-preserving service selection model based on encrypted Quality-of-Service (QoS) values of edge services for ensuring privacy. QoS values are encrypted using FHE. A distributed computation model for service selection using MapReduce is designed for improving efficiency. Second, we develop a composition model for edge services based on the functional relationship among edge services for optimizing the service selection process. Various experiments are performed in both centralized and distributed computing environments to evaluate the performance of the proposed framework using a synthetic QoS dataset

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    A new color image encryption technique using DNA computing and Chaos-based substitution box

    Get PDF
    In many cases, images contain sensitive information and patterns that require secure processing to avoid risk. It can be accessed by unauthorized users who can illegally exploit them to threaten the safety of people’s life and property. Protecting the privacies of the images has quickly become one of the biggest obstacles that prevent further exploration of image data. In this paper, we propose a novel privacy-preserving scheme to protect sensitive information within images. The proposed approach combines deoxyribonucleic acid (DNA) sequencing code, Arnold transformation (AT), and a chaotic dynamical system to construct an initial S-box. Various tests have been conducted to validate the randomness of this newly constructed S-box. These tests include National Institute of Standards and Technology (NIST) analysis, histogram analysis (HA), nonlinearity analysis (NL), strict avalanche criterion (SAC), bit independence criterion (BIC), bit independence criterion strict avalanche criterion (BIC-SAC), bit independence criterion nonlinearity (BIC-NL), equiprobable input/output XOR distribution, and linear approximation probability (LP). The proposed scheme possesses higher security wit NL = 103.75, SAC ≈ 0.5 and LP = 0.1560. Other tests such as BIC-SAC and BIC-NL calculated values are 0.4960 and 112.35, respectively. The results show that the proposed scheme has a strong ability to resist many attacks. Furthermore, the achieved results are compared to existing state-of-the-art methods. The comparison results further demonstrate the effectiveness of the proposed algorithm

    Mixing Biometric Data For Generating Joint Identities and Preserving Privacy

    Get PDF
    Biometrics is the science of automatically recognizing individuals by utilizing biological traits such as fingerprints, face, iris and voice. A classical biometric system digitizes the human body and uses this digitized identity for human recognition. In this work, we introduce the concept of mixing biometrics. Mixing biometrics refers to the process of generating a new biometric image by fusing images of different fingers, different faces, or different irises. The resultant mixed image can be used directly in the feature extraction and matching stages of an existing biometric system. In this regard, we design and systematically evaluate novel methods for generating mixed images for the fingerprint, iris and face modalities. Further, we extend the concept of mixing to accommodate two distinct modalities of an individual, viz., fingerprint and iris. The utility of mixing biometrics is demonstrated in two different applications. The first application deals with the issue of generating a joint digital identity. A joint identity inherits its uniqueness from two or more individuals and can be used in scenarios such as joint bank accounts or two-man rule systems. The second application deals with the issue of biometric privacy, where the concept of mixing is used for de-identifying or obscuring biometric images and for generating cancelable biometrics. Extensive experimental analysis suggests that the concept of biometric mixing has several benefits and can be easily incorporated into existing biometric systems
    • 

    corecore