681 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Global DDoS Threat Landscape Tracking Network Anomalies using Elliptic Curve Cryptography

    Get PDF
    Devices, such as in mobile devices or RFID. In brief, ECC based algorithms can be easily comprised into existing protocols to get the same retrograde compatibility and security with lesser resources.: Recent variants of Distributed Denial-of-Service (DDoS) attacks influence the flexibility of application-layer procedures to disguise malicious activities as normal traffic patterns, while concurrently overwhelming the target destination with a large application rate. New countermeasures are necessary, aimed at guaranteeing an early and dependable identification of the compromised network nodes (the botnet). This work familiarizes a formal model for the above-mentioned class of attacks, and we devise an implication algorithm that estimates the botnet hidden in the network, converging to the true solution as time developments. Notably, the analysis is validated over real network traces. An important building block for digital communication is the Public-key cryptography systems. Public-Key cryptography (PKC) systems can be used to provide secure substructures over insecure channels without swapping a secret key. Applying Public-Key cryptography organizations is a challenge for most submission stages when several factors have to be considered in selecting the application platform. The most popular public-key cryptography systems nowadays are RSA and Elliptic Curve Cryptography (ECC). The compensations can be achieved from smaller key sizes including storing, speed and efficient use of power and bandwidth. The use of shorter keys means lower space necessities for key storage and quicker calculation operations. These advantages are essential when public-key cryptography is applied in constrained

    Efficient trapdoor-based client puzzle system against DoS attacks

    Get PDF
    Denial of service (DoS) and distributed denial of service (DDoS) are serious threats to computer networks. DoS and DDoS attacks aim to shut down a target server by depleting its resources and rendering it incapable of offering stable and integrated service to legitimate clients. Preventing DoS and DDoS attacks is a difficult task. A promising countermeasure against DoS attacks is the Client Puzzle method, which nevertheless faces a number of challenges, such as the complexity of puzzle construction and solution verification. Our research focuses on exploring novel puzzle constructions to satisfy the high demands of DoS defence in practice. In this thesis, we first identify the underlying weaknesses of existing client puzzles. To mitigate these vulnerabilities, we recommend the necessary requirements for good client puzzles. Based on this, we propose a new model for puzzle distribution, called the Trapdoor-based Client Puzzle System (TCPS). Two specific schemes are presented to construct puzzles within TCPS. We depict these two schemes, where each trapdoor algorithm is applied respectively. Both schemes have two distinct features: the computational overheads are low, and the difficulty level of puzzles is measurable. Moreover, both puzzle schemes are provably secure under traditional hard problems in mathematics. Our contribution to client puzzle defence against DoS attacks can be summarised as follows: * Identify the shortcomings of existing client puzzles. * Recommend the requirements of good client puzzles. * Formally define the Trapdoor-based Client Puzzle System, along with strict security conditions. * Propose a client puzzle scheme whose security is based on the RSA Assumption. Effectiveness and security are analysed and proven. * Propose a second client puzzle scheme whose security is based on the Discrete Logarithm Problem (DLP). Similarly, effectiveness and security are also analysed. * Provide a possible configuration for system parameters. * Discuss further possible attacks and their solutions. As our research is carried out in DoS attack scenarios, we also introduce this technical background before our achievements are presented

    Security in Wireless Sensor Networks: Issues and Challenges

    Get PDF
    Wireless Sensor Network (WSN) is an emerging technology that shows great promise for various futuristic applications both for mass public and military. The sensing technology combined with processing power and wireless communication makes it lucrative for being exploited in abundance in future. The inclusion of wireless communication technology also incurs various types of security threats. The intent of this paper is to investigate the security related issues and challenges in wireless sensor networks. We identify the security threats, review proposed security mechanisms for wireless sensor networks. We also discuss the holistic view of security for ensuring layered and robust security in wireless sensor networks.Comment: 6 page

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    Prevention Mechanism on DDOS Attacks by using Multilevel Filtering of Distributed Firewalls

    Get PDF
    In the past decade, it has been found that DDoS has proved to be the most dangerous attack. IP spoofing is one of the kinds of DDoS attack which is emerging as a big threat in today’s world of technology. The Proposed Framework is a unique technique composed of distributed firewalls and hop count based filtering, it can be used to prevent such kind of DDoS attack. At The primary level, distributed firewalls filters the IP addresses which can be either Internet or Intranet. Along with this it also provide various other advantages such as reducing the dependency of network topology. At secondary level, hop count and TTL based filtering provides more secure level of filtration. In this paper, we have proposed a new framework which reduces the limitations of previous conventional techniques. DOI: 10.17762/ijritcc2321-8169.15032
    corecore