12,918 research outputs found

    Securely Launching Virtual Machines on Trustworthy Platforms in a Public Cloud

    Get PDF
    In this paper we consider the Infrastructure-as-a-Service (IaaS) cloud model which allows cloud users to run their own virtual machines (VMs) on available cloud computing resources. IaaS gives enterprises the possibility to outsource their process workloads with minimal effort and expense. However, one major problem with existing approaches of cloud leasing, is that the users can only get contractual guarantees regarding the integrity of the offered platforms. The fact that the IaaS user himself or herself cannot verify the provider promised cloud platform integrity, is a security risk which threatens to prevent the IaaS business in general. In this paper we address this issue and propose a novel secure VM launch protocol using Trusted Computing techniques. This protocol allows the cloud IaaS users to securely bind the VM to a trusted computer configuration such that the clear text VM only will run on a platform that has been booted into a trustworthy state. This capability builds user confidence and can serve as an important enabler for creating trust in public clouds. We evaluate the feasibility of our proposed protocol via a full scale system implementation and perform a system security analysis

    A JSON Token-Based Authentication and Access Management Schema for Cloud SaaS Applications

    Full text link
    Cloud computing is significantly reshaping the computing industry built around core concepts such as virtualization, processing power, connectivity and elasticity to store and share IT resources via a broad network. It has emerged as the key technology that unleashes the potency of Big Data, Internet of Things, Mobile and Web Applications, and other related technologies, but it also comes with its challenges - such as governance, security, and privacy. This paper is focused on the security and privacy challenges of cloud computing with specific reference to user authentication and access management for cloud SaaS applications. The suggested model uses a framework that harnesses the stateless and secure nature of JWT for client authentication and session management. Furthermore, authorized access to protected cloud SaaS resources have been efficiently managed. Accordingly, a Policy Match Gate (PMG) component and a Policy Activity Monitor (PAM) component have been introduced. In addition, other subcomponents such as a Policy Validation Unit (PVU) and a Policy Proxy DB (PPDB) have also been established for optimized service delivery. A theoretical analysis of the proposed model portrays a system that is secure, lightweight and highly scalable for improved cloud resource security and management.Comment: 6 Page

    Context-Awareness Enhances 5G Multi-Access Edge Computing Reliability

    Get PDF
    The fifth generation (5G) mobile telecommunication network is expected to support Multi- Access Edge Computing (MEC), which intends to distribute computation tasks and services from the central cloud to the edge clouds. Towards ultra-responsive, ultra-reliable and ultra-low-latency MEC services, the current mobile network security architecture should enable a more decentralized approach for authentication and authorization processes. This paper proposes a novel decentralized authentication architecture that supports flexible and low-cost local authentication with the awareness of context information of network elements such as user equipment and virtual network functions. Based on a Markov model for backhaul link quality, as well as a random walk mobility model with mixed mobility classes and traffic scenarios, numerical simulations have demonstrated that the proposed approach is able to achieve a flexible balance between the network operating cost and the MEC reliability.Comment: Accepted by IEEE Access on Feb. 02, 201

    My private cloud--granting federated access to cloud resources

    Get PDF
    We describe the research undertaken in the six month JISC/EPSRC funded My Private Cloud project, in which we built a demonstration cloud file storage service that allows users to login to it, by using their existing credentials from a configured trusted identity provider. Once authenticated, users are shown a set of accounts that they are the owners of, based on their identity attributes. Once users open one of their accounts, they can upload and download files to it. Not only that, but they can then grant access to their file resources to anyone else in the federated system, regardless of whether their chosen delegate has used the cloud service before or not. The system uses standard identity management protocols, attribute based access controls, and a delegation service. A set of APIs have been defined for the authentication, authorisation and delegation processes, and the software has been released as open source to the community. A public demonstration of the system is available online
    • …
    corecore