29 research outputs found

    Identity-Based Directed Signature Scheme from Bilinear Pairings

    Get PDF
    In a directed signature scheme, a verifier can exclusively verify the signatures designated to himself, and shares with the signer the ability to prove correctness of the signature to a third party when necessary. Directed signature schemes are suitable for applications such as bill of tax and bill of health. This paper studies directed signatures in the identity-based setting. We first present the syntax and security notion that includes unforgeability and invisibility, then propose a concrete identity-based directed signature scheme from bilinear pairings. We then prove our scheme existentially unforgeable under the computational Diffie-Hellman assumption, and invisible under the decisional Bilinear Diffie-Hellman assumption, both in the random oracle model

    Contributions to secret sharing and other distributed cryptosystems

    Get PDF
    The present thesis deals with primitives related to the eld of distributed cryptography. First, we study signcryption schemes, which provide at the same time the functionalities of encryption and signature, where the unsigncryption operation is distributed. We consider this primitive from a theoretical point of view and set a security framework for it. Then, we present two signcryption schemes with threshold unsigncryption, with di erent properties. Furthermore, we use their authenticity property to apply them in the development of a di erent primitive: digital signatures with distributed veri cation. The second block of the thesis deals with the primitive of multi-secret sharing schemes. After stating some e ciency limitations of multi-secret sharing schemes in an information-theoretic scenario, we present several multi-secret sharing schemes with provable computational security. Finally, we use the results in multi-secret sharing schemes to generalize the traditional framework of distributed cryptography (with a single policy of authorized subsets) into a multipolicy setting, and we present both a multi-policy distributed decryption scheme and a multi-policy distributed signature scheme. Additionally, we give a short outlook on how to apply the presented multi-secret sharing schemes in the design of other multi-policy cryptosystems, like the signcryption schemes considered in this thesis. For all the schemes proposed throughout the thesis, we follow the same formal structure. After de ning the protocols of the primitive and the corresponding security model, we propose the new scheme and formally prove its security, by showing a reduction to some computationally hard mathematical problem.Avui en dia les persones estan implicades cada dia més en diferents activitats digitals tant en la seva vida professional com en el seu temps lliure. Molts articles de paper, com diners i tiquets, estan sent reemplaçats més i més per objectes digitals. La criptografia juga un paper crucial en aquesta transformació, perquè proporciona seguretat en la comunicació entre els diferents participants que utilitzen un canal digital. Depenent de la situació específica, alguns requisits de seguretat en la comunicació poden incloure privacitat (o confidencialitat), autenticitat, integritat o no-repudi. En algunes situacions, repartir l'operació secreta entre un grup de participants fa el procés més segur i fiable que quan la informació secreta està centralitzada en un únic participant; la criptografia distribuïda és l’àrea de la criptografia que estudia aquestes situacions. Aquesta tesi tracta de primitives relacionades amb el camp de la criptografia distribuïda. Primer, estudiem esquemes “signcryption”, que ofereixen a la vegada les funcionalitats de xifrat i signatura, on l'operació de “unsigncryption” està distribuïda. Considerem aquesta primitiva des d’un punt de vista teòric i establim un marc de seguretat per ella. Llavors, presentem dos esquemes “signcryption” amb operació de “unsigncryption” determinada per una estructura llindar, cada un amb diferents propietats. A més, utilitzem la seva propietat d’autenticitat per desenvolupar una nova primitiva: signatures digitals amb verificació distribuïda. El segon bloc de la tesi tracta la primitiva dels esquemes de compartició de multi-secrets. Després de demostrar algunes limitacions en l’eficiència dels esquemes de compartició de multi-secrets en un escenari de teoria de la informació, presentem diversos esquemes de compartició de multi-secrets amb seguretat computacional demostrable. Finalment, utilitzem els resultats obtinguts en els esquemes de compartició de multi-secrets per generalitzar el paradigma tradicional de la criptografia distribuïda (amb una única política de subconjunts autoritzats) a un marc multi-política, i presentem un esquema de desxifrat distribuït amb multi-política i un esquema de signatura distribuïda amb multi-política. A més, donem indicacions de com es poden aplicar els nostres esquemes de compartició de multi-secrets en el disseny d’altres criptosistemes amb multi-política, com per exemple els esquemes “signcryption” considerats en aquesta tesi. Per tots els esquemes proposats al llarg d’aquesta tesi, seguim la mateixa estructura formal. Després de definir els protocols de la primitiva primitius i el model de seguretat corresponent, proposem el nou esquema i demostrem formalment la seva seguretat, mitjançant una reducció a algun problema matemàtic computacionalment difícil

    A supplement to Liu et al.\u27s certificateless signcryption scheme in the standard model

    Get PDF
    Recently, Liu et al. proposed the first certificateless signcryption scheme without random oracles and proved it was semantically secure in the standard model. However, Selvi et al. launched a fatal attack to its confidentiality by replacing users\u27 public keys, thus pointed out this scheme actually doesn\u27t reach the semantic security as claimed. In this paper, we come up with a rescue scheme based on Liu et al.\u27s original proposal. A Schnorr-based one-time signature is added to each user\u27s public key, which is used to resist Selvi et al.\u27s attack. In addition, according to the mistake made in Liu et al.\u27s security proof, we also show that our improvement is really secure in the standard model under the intractability of the decisional bilinear Diffie-Hellman assumption

    An Efficient Certificate-Based Designated Verifier Signature Scheme

    Get PDF
    Certificate-based public key cryptography not only solves certificate revocation problem in traditional PKI but also overcomes key escrow problem inherent in identity-based cryptosystems. This new primitive has become an attractive cryptographic paradigm. In this paper, we propose the notion and the security model of certificate-based designated verifier signatures (CBDVS). We provide the first construction of CBDVS and prove that our scheme is existentially unforgeable against adaptive chosen message attacks in the random oracle model. Our scheme only needs two pairing operations, and the signature is only one element in the bilinear group G1. To the best of our knowledge, our scheme enjoys shortest signature length with less operation cost

    Security of IoT in 5G Cellular Networks: A Review of Current Status, Challenges and Future Directions

    Get PDF
    The Internet of Things (IoT) refers to a global network that integrates real life physical objects with the virtual world through the Internet for making intelligent decisions. In a pervasive computing environment, thousands of smart devices, that are constrained in storage, battery backup and computational capability, are connected with each other. In such an environment, cellular networks that are evolving from 4G to 5G, are set to play a crucial role. Distinctive features like high bandwidth, wider coverage, easy connectivity, in-built billing mechanism, interface for M2M communication, etc., makes 5G cellular network a perfect candidate to be adopted as a backbone network for the future IoT. However, due to resource constrained nature of the IoT devices, researchers have anticipated several security and privacy issues in IoT deployments over 5G cellular network. Off late, several schemes and protocols have been proposed to handle these issues. This paper performs a comprehensive review of such schemes and protocols proposed in recent times. Different open security issues, challenges and future research direction are also summarized in this review paper

    Research Philosophy of Modern Cryptography

    Get PDF
    Proposing novel cryptography schemes (e.g., encryption, signatures, and protocols) is one of the main research goals in modern cryptography. In this paper, based on more than 800 research papers since 1976 that we have surveyed, we introduce the research philosophy of cryptography behind these papers. We use ``benefits and ``novelty as the keywords to introduce the research philosophy of proposing new schemes, assuming that there is already one scheme proposed for a cryptography notion. Next, we introduce how benefits were explored in the literature and we have categorized the methodology into 3 ways for benefits, 6 types of benefits, and 17 benefit areas. As examples, we introduce 40 research strategies within these benefit areas that were invented in the literature. The introduced research strategies have covered most cryptography schemes published in top-tier cryptography conferences

    Stronger Security and Constructions of Multi-Designated Verifier Signatures

    Get PDF
    Off-the-Record (OTR) messaging is a two-party message authentication protocol that also provides plausible deniability: there is no record that can later convince a third party what messages were actually sent. To extend OTR to group messaging we need to consider issues that are not present in the 2-party case. In group OTR (as in two-party OTR), the sender should be able to authenticate (or sign) his messages so that group members can verify who sent a message (that is, signatures should be unforgeable, even by group members). Also as in the two-party case, we want the off-the-record property: even if some verifiers are corrupt and collude, they should not be able to prove the authenticity of a message to any outsider. Finally, we need consistency, meaning that a corrupt sender cannot create confusion in the group as to what he said: if any group member accepts a signature, then all of them do. To achieve these properties it is natural to consider Multi-Designated Verifier Signatures (MDVS), which intuitively seem to target exactly the properties we require. However, existing literature defines and builds only limited notions of MDVS, where (a) the off-the-record property (referred to as source hiding) only holds when all verifiers could conceivably collude, and (b) the consistency property is not considered. The contributions of this paper are two-fold: stronger definitions for MDVS, and new constructions meeting those definitions. We strengthen source-hiding to support any subset of corrupt verifiers, and give the first formal definition of consistency. We give several constructions of our stronger notion of MDVS: one from generic standard primitives such as pseudorandom functions, pseudorandom generators, key agreement and NIZKs; one from specific instances of these primitives (for concrete efficiency); and one from functional encryption. The third construction requires an involved trusted setup step — including verification keys derived from a master secret — but this trusted setup buys us verifier-identity-based signing, for which such trusted setup is unavoidable. Additionally, in the third construction, the signature size can be made smaller by assuming a bound on colluding verifiers

    Breaking and Building of Group Inside Signature

    Get PDF
    Group Inside Signature (GIS) is a signature scheme that allows the signer to designate his signature to be verified by a group of people, so that members other than the designated group cannot verify the signature generated by him. In Broadcast Group Oriented Signature (BGOS), an user from one group can designate his signature to be verified by members of other group. The GIS and BGOS schemes \cite{MaAoHe05}, \cite{CJ09} and \cite{MaHeAo05} which we consider are certificateless schemes. An Adaptable Designated Group Signature (ADGS), is one in which an user can designate his signature to be verified by a selected set of members who are from different groups. The ADGS scheme \cite{MaL06} which we consider here is an identity based scheme. In this paper, we present the cryptanalysis of four schemes that appeared in \cite{MaAoHe05}, \cite{CJ09}, \cite{MaHeAo05} and \cite{MaL06}. We show that, both GIS schemes \cite{MaAoHe05}, \cite{CJ09} and BGOS scheme \cite{MaHeAo05} suffers from Type-I and Type-II vulnerabilities and ADGS \cite{MaL06} is universally forgeable. We also present a new scheme for ADGS (N-ADGS) and proved its security in the random oracle model. The existing model for ADGS did not consider unlinkability which is one of the key properties required for ADGS. We provide security model for unlinkability and also prove our scheme is unlinkable
    corecore